CVD Deposition of Group-III Nitride Materials

By : Prof. Asif Khan,

Department of Electrical Engineering, University of South Carolina, asif@engr.sc.edu Outline

1. Why III-Nitrides

- 2. Material Requirements and Issues
- 3. Substrate Technology
- 4. Thick Film Deposition (HVPE)
- 5. MOCVD Growth
- 6. MEMOCVD-Digital Epitaxy
- 7. Ternary and Quaternary Digital Epitaxy
- 8. Lateral Epitaxial Overgrowth
- 9. Devices and Conclusions

Work supported by Army, Navy, DARPA and NASA

Breakdown Field approximately 5-10 times of GaAs

Lighting and Display Technologies

Past and the Present

Next Generation Lighting Systems

Deep Ultraviolet Light Emitting Diodes

Applications

White Lighting <u>\$ 10 billion*</u>

Purifiers \$ 20 billion* Bio-Med Sensors <u>\$ 10 billion*</u>

Indoor

 $\lambda \sim 254 \text{ nm}$

 $\lambda \sim 280 \text{ nm}$

* Strategies unlimited, Compound Semiconductors

Water

 $\lambda \sim 265 \text{ nm}$

III-N Device Epilayer Needs

LEDs and Transistors

N- and p-doped Layers
Heterojunctions
Quantum Wells and Superlattices

Choice of Substrates

Substrate	Lattice constant (Angstroms) at 300 K	Thermal Conductivity W/cm-K at 300 K	Thermal expansion coefficient (10 ⁻ ⁶ 1/K) at 300 K	Bandgap (eV)
GaN	a = 3.188 c = 5.185	2.0	3.1 (ave. 300 to 3.5 800 K)	3.39
AIN	a = 3.112 c = 4.982	3.2 (c-axis)	2.30 2.69	6.2
6H SiC	a = 3.081 c = 15.117	4.9 (a-axis)	2.9 2.9	3.03
4H-SiC	a = 3.080 c = 10.082	~3.7	~2.8 ~2.8	3.26
Sapphire	a = 4.765 c = 13.001	0.35 (c-axis)	5.9 6.3	9.9
Si	a = 5.4301	1.56	2.57	1.1
GaAs	a = 5.6533	0.54	5.8	1.42

Nitride Materials and Possible Substrates

• No lattice matched substrate

• Large polarization effects

100 µm

Bulk growth of GaN: direct synthesis

Melting conditions of semiconductors (without dissociating)

Crystal	$T^M (^\circ {\bf C})$	p^M (atm.)		
Si	1400	<1		
GaAs	1250	15		
GaP	1465	30		
GaN	2500	45 000		
Diamond				
(synthesis)	1600	60 000		

Bulk crystal of GaN, grown at 10 – 20 Kbar, and 1400 – 1600 °C without seed, along the 10-10 direction). Squares grids have 1 mm sides

Equilibrium curve for GaN

 $2Ga \text{ (melt)} + N_2 = 2GaN$

Sublimation Growth of AIN

Fig. 1. Schematic view of AlN sublimation growth system.

AlN sublimes dissociatively at the hotter source and condenses reversibly at the colder seed

Lianghong Liu, James H. Edgar*

Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, KS 66502, USA

15 mm Diameter AlN Boule

Bulk AIN PVT

Figure 2. Photograph of pure AlN grown for 100 hours, one grid represents 1mm.

Lianghong Liu, James H. Edgar*

Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, KS 66502, USA

Bulk Crystal Growth Facilities

Crystal Growth

CUTTING

GRINDING

SiC CRYSTALS

(1120)

(2" dia. ingot)

Halide Vapor Phase Epitaxy (HVPE)

Epitaxial Nitride Films by HVPE

- Gallium transport by halide (chloride) formation $2HCl(g) + 2Ga(l) \rightarrow 2GaCl(g) + H_2(g) T = 800 \ ^{\circ}C$
- Reaction with chloride to form the nitride $GaCl(g) + NH_3(g) \rightarrow GaN(s) + HCl(g) + H_2(g); T = 1030 \ ^{\circ}C$
- Growth rate is determined by HCl flux
- High growth rates are possible due to low probability of gas phase nucleation
- Growth rates can exceed 100 mm/min

HVPE GaN

Defect Reduction with Thickness

Fig. 1. The surface morphology of GaN layers with different thicknesses of 15 µm (a); 26 µm (b); 42 µm (c); 96 µm (d), grown at the same growth conditions.

B. Monemar, J Crystal Growth, Vol. 208, p. 18, 2000

Defects in HVPE GaN Films

Cross section of pit with crack

Cross section of crack

Surface with small pits

Featureless surface

Free Standing GaN Wafer by HVPE

R. Vaudo, ATMI

Growth of AIN & AIGaN by HVPE

MOCVD growth system

Various problems associated with mismatches

Substrate Property

1.Lattice (a-lattice constant) mismatch

- 2. Vertical (c-lattice constant mismatch)
- 3. Coefficient of thermal expansion mismatch
- 4. Low thermal conductivity
- 5. Different chemical composition of the epitaxial film
- 6. Polar surface

Consequence

- 1. All problems typically associated with high dislocation density
- 2. Anti-phase boundaries, inversion domain boundaries
- 3. Thermally induced stress, cracks in epitaxial films
- 4. Poor heat conduction; unsuitability for high power devices
- 5. Contamination, interface states, poor wetting of surface during growth
- 6. Mixed polarity; inversion domains

MOCVD III-N growth issues

Strain/thermal mismatch

Lattice mismatched Substrates

Growth Temperature compatibility

- InN 600 C
- GaN 1000 C
- AIN 1150 C

SLs Strain-management for crack-free AlGaN growth

GaN on Sapphire substrate

Growth steps of GaN on sapphire

- The lattice mismatch with GaN is 13.9%
- The steps for GaN growth includes: (a) Nitridation and (b) low temperature buffer layer (usually AlN) growth
- Growth on c-plane of sapphire gives c-plane GaN, while growth on r-plane gives a-plane GaN
- Energy gap of sapphire is > 8eV so light extraction possible from substrate side for LEDs

Microstructure of GaN on Sapphire

Ordered polycrystalline microstructure of GaN on sapphire. (a) Side view showing relative tilt of (0001) directions between grains; (b) Plan view showing relative twists of polycrystal (1120) directions.

Custom MEMOCVD system for III-Nitrides

MOCVD system contains:

Vacuum system Gas delivery system Heating system Control system

MEMOCVD of III-N Materials

MEMOCVD AIN/ALGaN SLs-complex

Deep UV LEDs (250-280 nm)

X-ray spectra of MEMOCVD AlN/AlGaN SL buffer

N-AIGaN on MEMOCVD AIN+SLs buffer:

Al_{0.66}Ga_{0.34}N for sub-260nm LEDs

MOCVD vs MEMOCVD AIN

MEMOCVD AllnGaN digital alloys

PM1

A representative MEMOCVD growth unit cell, AllnGaN (2,2,1)

The number of repeats of Al, In, and Ga pulses in the unit cell are 2, 2, and 1, respectively. Pulse length is kept as 6 seconds.

MEMOCVD AllnGaN digital alloys

Composition control

4.0

(3,3,1) (3,1 (3,0)2 3 5 0 6 Δ m, In pulse number in the growth unit cell (3,m,1)

(3,3⁺,1) ●

(3,6,1)

A typical EDAX spectrum for our AlInGaN samples

EDAX In fraction as a function of m, In pulses within one growth unit cell for (3, m, 1)

MEMOCVD AlInGaN Digital Alloy PL

Quaternary Digital Superlattices

XRD Spectra

The majority of dislocations in GaN result from the coalescence of misoriented islands

• Dislocations can interact and be annihilated

Stimulated Emission at 258 nm in AlN/AlGaN Quantum Wells Grown on Bulk AlN Substrates

Figure 4. Sample-edge emission spectra of $Al_{0.5}Ga_{0.5}N/AlN$ quantum wells on bulk AlN under excitation power density of 7.5 MW/cm² at different stripe lengths *L* (indicated). The base lines of the spectra are vertically shifted.

Pulsed Lateral Overgrowth (PLOG)

Different Pulse time for NH₃ 'on' and 'Off'

Pulsed Lateral Overgrowth (PLOG)

TEM X-section Image

Complete coalescence of GaN by lateral overgrowth method

Plane view

Cross sectional view

Surface roughness of PLOG GaN

RMS roughness

PLOG GaN = 7-10 Å

- * No step termination observed
- * Reduction of screw component threading dislocation

Edge Emitting UV LEDs

Device Design

Non Polar III-N Device Development

Approach 2: Selective Area Lateral Epitaxy (SALE)

Non Polar III-N Device Development

Selective Area Lateral Epitaxy (SALE)

Step 1. a-plane GaN pillar on R-plane Sapphire

Step 2. a-plane GaN pillar after SiO₂ deposition

SEM image of fully coalesced SALE a-plane GaN layer

a-plane GaN Template, ELOG, SALE

RMS surface Roughness

a-plane GaN Template, ELOG, SALE

X-Ray Rocking Curve Comparison a-plane GaN

PML

Edge Emitting Non Polar UV LEDs

362 nm Peak Emission LED over r-sapphire

C. Chen et. al. Jpn. J. Appl. Phys., 42, Part 2, No. 9A/B, pp. L1039-L1040 (2003).

Edge Emitting Non Polar UV Laser

SALE a-plane GaN cavity

Deep UV LEDs (250-280 nm)

I-V and Spectral Emission

100 μm x 100 μm

Deep UV LEDs (250-280 nm)

Pulsed powers

R

E

S

E

A

R

C

Η

Τ

E

Α

Μ

PML Integrated AlGaN Research Team

Professor Asif Khan

Matl. Growth

Matl. Test

Device Process

Device Test

Scientist

Dr. Jinwei Yang **Dr. Wenzhong Sun** Dr. Changqing Chen Dr. C. Kim

Dr. Hongmei Wang Dr. E. Kuokstis Dr P. Maruska Dr. Mikhail Gaevski

- Dr. Vinod Adiyarahan
- **Dr. Ashay Chitnis**
- Ms. Irina Mokina
- Dr. Y. Lee Dr. H. Cho

Dr. Grigory Simin Dr. Alex Koudymov **Dr. Max Shatalov**

Ms. Gong Zheng Mr. Ping Huang

Students

Ms. Husna Fatima

- Mr. M. Islam
- 🗙 Mr. Salih Saygi
- Mr. Wenhua Gu
- 🗙 Mr. J. Wang
- Mr. J. Li
 - Mr. Shiva Rai X
 - Mr. Shuai Wu
 - Mr. A. Sattu
 - Mr. Z. Yang
 - Mr. N. Tiperneni

Support

- Mr. Ahmad Hedari Mr. Bin Zhang Mr. D. Johnson Ms. Quinhua Zhang Ms. T. Osborne
- Ms. Pat Dedman

Photonics Microelectronics Lab

20,000 sq. ft. class 100 clean rooms

Materials

Matl. Testing

Lithography

Optical Test

Device Package

Electrical Test

Device Process

