SiGe CVD, fundamentals and device applications

Dr Derek Houghton Aixtron Inc ICPS, Flagstaff July 2004

š **OVERVIEW**

1. Introduction

2. SiGe Market Survey

3. Fundamentals of SiGe CVD

4. CVD Equipment for SiGe

5. Device aplications and commercialization

6. SiGe materials engineering, metrology

7. Summary and Discussion

SiGe's Market Opportunity...

	Sige HBTs/CM	OS? III-V FETS/HBTS			
Automotive					
Road Pricing		Collision Avoidance			
Navigation/Areospace					
	GPS x-ban Radar	d			
Communications					
GSM DCS DEC	S ISM				
	FRA WLAN OC-48 G-Ethernet	N DTH WLAN DBS FRA OC-192 LMDS			
0.1 0.2 0.5 1	25 Fre	10 20 50 100 equency (GHz)			

SiGe HBT device structure and process description

SiGe's main market is telecommunication (wireless and datacom)

SiGe IC forecast by market, 2000 to 2005, in mil. US\$

Comments

- SiGe viable alternative to GaAs
- Main markets being targeted:
 - Cellular / Cordless / WLAN
 - FO-Datacom (MUX/DEMUX)
 - PC interface cards / LAN
- Future trends:

•

•

٠

- integrated low power RFfront end of most handsets
- First choice for up/down conversion in tuners/ transceivers
- will dominate 40 Gbps

Source: Strategies Unlimited, 1999

CAGR: Compound Average Growth Rate

Strained Si: prototypes from Intel, IBM & UMC demonstrated

Almost all large Si-CMOS manufacturers are presenting cross sectional pictures of CMOS transistors (with gate lengths between 65 and 90 nm) which use Strained-Si technology. Intel and IBM use their own technology, whereas UMC is Amberwave's licensee

Strained-Si HeteroWafer[®] technology: process and actual status

Actual status Strained-Si process

- Strained Si technology enables improvement in CMOS performance and functionality via replacement of the bulk, cubic-crystal Si substrate with a Si substrate that contains a tetragonally distorted, biaxially strained Si thin film at the surface
- Different types of processes developed and patented by the main players: Amberwave (IQE) - AIXTRON, IBM,Toshiba & Intel
- First demos of perfect working 52 Mbit SRAMs with 90 nm CMOS devices on 300 mm wafers available from Intel. Ramp-up of Pentium 4 production with Str.-Si planned for 2H/2003 !
 - Process and substrate costs still not 100% fixed. Price expectations for substrate from IC manufacturers still unknown

Strained Si process of Amberwave: One of the Strained Si pioneers

Intel's Strained Silicon Transistors

Strained Silicon CMOS technology *SiGe deposited selectively, Intel Pentium IV in production

DISTRIBUTION OF MOLECULAR VELOCITIES

Molecular Flow in a Tube

Viscous Flow in a Tube

Free Convection Cross Section of Rectangular Chamber

- F₁ = Flux of reactant diffusing through boundary layer
- $F_2 = Flux$ reacting at surface
- δ = Boundary-layer thickness
- C_G= Reactant concentration in forced-convection region
- Co = Reactant concentration adjacent to surface
- D = Gaseous diffusion coefficient
- k= Reaction rate coefficient

<u>Deposition Kinetics</u> (3) Diffusion-Limited Region

Increase Temperature Flow Boundary Solid $k = k_o \exp(-E_a/kT)$ Layer Substrate Region Fast Surface Reaction Slow Diffusion C_{G} 1 + k δ/D C_0 $C_0 \approx 0$ Diffusion or Mass-Transport y=δ y=0Limited Region

Gases for Silicon Epitaxy

	Silane (SiH ₄)	Dichlorosilane (SiH ₂ Cl ₂)	Silicon Tetrachloride
Temperature	1000-1050 ⁰ C	1050-1100°C	1150-1200°C
Reaction	SiH ₄ Si + 2H ₂	SIH_2CI_2 Si + 2HCI	$SiCl_4 + 2H_2$ Si + 4HCl
Reversible	No	Yes	Yes
HCI Byproduct	No	Yes	Yes
Gas-Phase Nucleation	Yes	No	No
Deposition Rate	0.2 µm/min	~1 µm/min	>2 µm/min
Flow Control	Easy	Moderate	Difficult
Cost	High	Moderate	Low
Danger	High	Moderate	Moderate
Used for	Thinner Layers	Many Layers	Thicker Layers
			אואואטח

- Impingement
- Surface adsorption
- Surface diffusion
- Chemical reaction
- Surface diffusion
- Nucleation
- Incorporation
- Byproduct desorption

Structure Depends on Surface Diffusion

- Deposition temperature
- Deposition rate

$$L \approx \sqrt{Dt} \sim \frac{1}{\sqrt{R_D}} \exp\left(\frac{-E_a}{2kT}\right)$$

L= surface diffusion length

- D = Surface diffusion coefficient
- t = time available for surface diffusion

$$R_{D} = deposition rate$$

 $E_a = activation energy$

Deposition pressure

Blocking of diffusion paths by adsorbed reactants, carrier gas, or impurities

Wafer Cleaning Before Epitaxial Deposition

Conventional:

High temperature (1100-1250°C) H₂ (+HCl)

• Need:

Low-temperature process (750-950°C)

Possibilities:

Hydrogen-terminated surface Minimizes native oxide formation Dilute HF:H₂O etch *without* water rinse Safety? Perhaps use cluster tool Anhydrous or vapor HF? Ex-situ? Cluster tool? Low-energy H₂ plasma? UV-ozone? <u>GeH₄?</u>

Use minimum safe water rinse time Reduce oxygen concentration in rinse water

Effect of air exposure prior to HF passivation

Control

Surface-reaction limited

- Temperature sensitive
- Depends on gases and chemical reaction

Mass-transport limited

- Gas-phase diffusion
- Sensitive to gas flow
- Difficult if wafers closely spaced
- In-situ monitoring
 - Wafer surface temperature
 - Thickness
 - Index of refraction
- Gas depletion
- Uniformity of heating

Oxygen Control in Si_{1-x}Ge_x

• Si_{1-x}Ge_x has a Very High Affinity for O

- At 700C, Growth of Si with 500ppb of H_2O in H_2 Carrier: $O < 10^{17}$ cm⁻³
- At 700C, Growth of $Si_{0.8}Ge_{0.2}$ with 500ppb of H_2O in H_2 Carrier: $O > 10^{20} \text{ cm}^{-3}$

Methods of O Control

- Process at Hard Vacuum
 - UHV/CVD or MBE
- Process at RP or AP (20torr 760torr) with Purified Gases
 - Require < ~50ppb O and H₂O in Process Gases
 - H₂
 - Palladium Alloy Diffuser
 - H₂, N₂, SiH₄, GeH₄, HCI
 - Active Cartridge Purifiers
 - Nanochem (Matheson)
 - ATMI
 - Millipore
 - SAES
 - Aeronex

Partial pressure for oxygen incorporation from H₂O and O₂

Gases for Silicon Epitaxy

	Silane (SiH ₄)	Dichlorosilane (SiH ₂ Cl ₂)	Silicon Tetrachloride
Temperature	1000-1050 ⁰ C	1050-1100 [°] C SiH₂Cl₂→►	1150-1200 [°] C SiCL + 2H►
Reaction	Si + 2H ₂	Si + 2HCI	Si + 4HCl
Reversible	No	Yes	Yes
HCI Byproduct	No	Yes	Yes
Gas-Phase Nucleation	Yes	No	No
Deposition Rate	0.2 µm/min	~1 µm/min	>2 µm/min
Flow Control	Easy	Moderate	Difficult
Cost	High	Moderate	Low
Danger	High	Moderate	Moderate
Used for	Thinner Layers	Many Layers	Thicker Layers

AIXTRON's flexible epi systems for Strained Si / SiGe

Tricent[®]

Tricent SiGe Cluster Tool: 150, 200 or 300

VS. Multiwafer Reactor[®] AIX 2600G3: up to 7x150 or 3x200 mm

molecular flow Ü uniform growth sticking coefficients~10⁻³ UHV initial conditions, P~10⁻⁹ m bar hydrogen terminated Si wafers at start

Hot wall UHVCVD Batch tool

NIXIKUIT

Product Information EPIGRESS UH254/256/258 UHV-CVD SYSTEM FOR SiGe

OF CHOICE

UHV-CVD is the technique of choice for large-scale deposition of SiGe. The process is operated under surface-kinetics limited conditions, which Epigress UHV-CVD system takes full advantage of. Homogeneous growth is obtained on up to 25 of 4 to 8-inch wafers.

SINGLE-WAFER REACTOR WITH LOAD LOCK AND SUPPORT PLATE

Configuration of ASM's Epsilon 3000

Applied Materials Centura

rixtron

Uniform Gas Distribution by AIXTRON's Closed Coupled Showerhead

SiGe Tricent®

Dual-Chamber Showerhead (pat. pend.)

Temperature Control Concept

SiGe Tricent[®] Unique CVD chamber features developed beyond industry standards

Tricent[®] Customer Process Support

SiGe Epitaxy Application

	SiGe base HBT	MOSFET	
Device Structure	Crystalline SiGe	Poly-Si Source drain	Poly-Si Gate p Strained Si layer p relaxed Si _{1-x} Ge _x p SiGe graded Buffer Ge : 0% -> x% p Si Substrate
Location of use	Bipolar transistor Base Layer	Elevated Source Drain	Strained Channel
Key Issue	High frequency (F _t , F _{max})	Ultra Shallow Junction	Carrier mobility in channel
Key	Crystallinity	Selectivity	Productivity
Process Parameter	Dopant & Ge fraction Control	Productivity	
	Productivity		

SiGe HBT in a BiCMOS flow

XTEM of Si deposition on Si/oxide

HBT base structure SIMS profiling

Si_{1-x}Ge_x:C

- Why Add C to Si_{1-x}Ge_x?
 - Adding 0.5% to 1% C Greatly Reduces B Diffusion
 - **D**_{B, Si} > **D**_{B, SiGe} > **D**_{B,SiGe:C}
 - Compensate Strain in Si_{1-x}Ge_x for Improved Thermal Stability
 - Add Approx. 1 atom of C per 9 atoms of Ge

Issues Regarding C Addition to Si_{1-x}Ge_x

- C <u>Must</u> be Substitutional in Crystal Lattice to Suppress B Diffusion
 - Deposition Temp. < 625C
 - Higher Deposition Temp. Results in Interstitial C
 - Can Cause Amorphous Film Characteristics for C > ~3%
- Precursors for C Addition
 - SiCH₆ (Typically 0.1% to 1% SiCH₆ in H_2)
 - C₂H₄ (Ethene or Acetylene), C₅H₈ (Cyclopentane)
 - Simple Alkanes, e.g. CH₄, C₂H₆, C₃H₈ etc. Do Not Decompose Adequately

Effect of Si_{0.8}Ge_{0.2} Deposition Temperature on Substitutional vs. Interstitial C Incorporation

CMOS transistor

Advantages:

Bulk electron and hole mobility is enhanced in Strained Si: For p-MOSFET, hole mobility increases for Ge content up to 30-40%, while for n-MOSFET, the electron mobility saturates at about 20% of Ge.

Reported Improvements:

- Electron mobilities > 70 % on bulk Si NMOS is reported by IBM which translates into > 35% Id improvement (VLSI '01)
- Electron mobilities of > 50 % and hole mobilities 15-20 % on SOI is reported by IBM (VLSI '01)
- Electron mobilities of 1.7x on SOI is reported by Hoyt (IEEE El. Dev. Letr '01)
- Electron mobilities > 75 % on bulk Si is reported by Hoyt, Gibbons & Rim (IEEE Trans, '00)

Key issues:

- Gate Oxidation
- Device Isolation
- Self Heating
- Growth rate cost
- Defect density at surface
- Process integration difficulties

Intel's Strained Silicon Transistors

Critical Thickness for Pseudomorphic Si_{1-x}Ge_x

TRON

High Temperature Deposition

Low Temperature Deposition

Stress in Strained SiGe is Compressive. Stress in Strained Si is Tensile. Increasing the Si Thickness Above 300 Å Decreases the Strain and Shifts the Strained Si Peak Closer to the Substrate Peak.

SIMS profileStrained Si – Graded SiGe Buffer

Cs

Cascade Scientific

Principle for Production of Strained Si Film

First a SiGe buffer layer is grown on Si followed by a relaxed SiGe layer with a lattice larger than Si Next Si is grown on the relaxed SiGe layer; the Si atoms stretch to align with the SiGe layer so that the silicon layer becomes tensely strained

Graphs courtesy of IBM

Strained Si layers

Pure Ge on Silicon substrates

Low defect density Ge without SiGe graded buffer

Cross sectional TEM

Plan view TEM (looking down through Ge cap)

Growth Rate vs Germanium concentration

Growth Rates vs Temperature

Temperature Dependence of Si_{1-x}Ge_x Deposition Rate

Effect of Temperature and GeH₄ on Ge Content

SiGe/Si Multilayer structure

Abrupt Si/SiGe interfaces and precise control of Ge % for "PIN Photodetector"

SiGe Multi Quantum Wells (MQW)

SiGe Multi Quantum Wells (MQW)

Raman Spectroscopy Can Provide Information on Molecular Vibrations of Lattice.

Raman Scattering

Tensile Stress in Strained Si is ~5 GPa (50,000 atm.).

Fourier transform low temperature photoluminescence apparatus.

PL spectra from SiGe HBT transistors

PL of SiGe HBT

Photoluminescence Mapping of Composition and Bandgap on a 6" wafer

Sample point	"NP" energy (meV)	Energy bandgap (meV)	Composition (% of Ge)				
a	1080	1092.2	8.97				
b	1082.5	1094.7	8.69				
С	1085.2	1097.4	8.39				
d	1083.3	1095.5	8.60				
e	1082.5	1094.7	8.69				
f	1084.8	1097.0	8.44		n		\mathbf{i}
g	1083.7	1095.9	8.56		a		
h	1079	1091.2	9.08		y		
			d	-	C	b	а
					f		
					e		

Auger Electron Spectroscopy Of Graded germanium concentration profiles

Trends in "novel" epitaxy in Si based materials

For graded SiGe buffers Low CoO, defect density reduction, flatness

Thin SiGe epitaxy with defect nucleation layer SOI substrates

Lower thermal budget in CMOS low leak rate tools new precursors with high GR at <600C, e.g.trisilane

Selectivity, patterned wafers, SOI substrates

High mobility channels Pure Ge, III-V's on Ge on SiGe, epitaxial metals

