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SiGe(C) MOSFET Technology

Sanjay Banerjee
University of Texas at Austin

� Issues in Scaled CMOS
� Bandstructure, Transport and Strain
� Enhanced Mobility Channels

- Strained Si and SiGe(C)
� Multi-Gate and Novel MOSFETs
� Process Integration Challenges
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Experimental output characteristics of n-channel and p-channel MOSFETs with 0.1 micron channel 
lengths. The curves exhibit almost equal spacing, indicating a linear dependence of ID on VG, rather 
than a quadratic dependence. We also see that ID is not constant but increases somewhat with VD
in the saturation region. The p-channel devices have lower currents because hole mobilities are 
lower than electron mobilities. 
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5For short �quasi-ballistic� MOSFETs, current is limited by source-to-channel injection of thermal carriers. Since, 
here the longitudinal field is low, this injection is limited by low field mobility. (Natori and Lundstrom)
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Compressive Strain in Si1-xGex

� Si1-xGex Bulk Properties.
� 0 to 100% Ge possible
� Lattice constant and bandgap

given by Vegard�s Law: 

� Si1-xGex on Si
� Up to 4.2% lattice mismatch
� Strained epitaxial layers
� Tetragonal distortion breaks 

degeneracy in the bandstructure.
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Bandstructure effective mass, m*, is inversely related to curvature of bands, and 
depends on crystal orientation.
Density of states m* is related to geometric mean of bandstructure m*. Must 
count number of �equivalent� valleys.
Conductivity m* is harmonic mean of bandstructure m*.
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Si-based Strained Materials
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Calculated Electron and Hole Mobility of Strained SiGe
Hole mobility with/without alloy scattering in plane and out-of-plane

Electron mobility with/without alloy scattering in plane and out-of-plane

Ge MOLE FRACTION

Fischetti and S.E. Laux, J. Appl. Phys. 80 (4), 1996
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Monte Carlo calculations of minority hole mobilities in Si1-xGex for four doping 
levels (in cm-3) at 300 K: dot-dashed line is the vertical mobility of strained 
Si1-xGex, solid line is the mobility of unstrained Si1-xGex, dashed line is the planar 
mobility of strained Si1-xGex. 

FM Bufler, P Graf, B Meinerzhagen, G Fischer, H Kibbel. Hole transport investigation in unstrained and 
strained SiGe. J. Vac. Sci. Technol. B 16(3), pp. 1667-1669, 1998.
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• Base pressure: ~10-10 Torr
• Cold wall, load locked system
• Low deposition pressures

• 1 to 10 mTorr
• ~500o C growth temperature

• Gases
• Si2H6, GeH4, CH3SiH3

• B2H6, PH3

Ultra High Vacuum Chemical Vapor Deposition

� Can use hot wall UHVCVD or RTPCVD
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Strained Si-on-SiGe Buffer



15

Inversion Layer Mobility

Strained Si mobility 
enhancement may be 
due to reduced 
surface roughness, 
rather than 
bandstructure
(Fischetti) 
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Strained Si NMOSFET Monte Carlo Simulations
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!MOSFET (Tox= 2 nm) K. K. Rim et. al., IEEE Trans. on Elec. Dev., 47 (7), pp. 1406, 2000
! MIT well-tempered device structure:http://www-mtl.mit.edu/Well/device50/topology50.html
!1-D Schrödinger equation  for quantum correction
!As suggested by Fischetti et. al., J. Appl. Phys., 92 (12), 2002), surface roughness reduction may 
play a role in mobility increase in strained-Si devices.
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Current enhancement in Strained Si NMOSFET
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Strained Si p-MOSFETs

� µeff enhancement decreases with gate 
overdrive* for holes
� No p-channel enhancement at Eeff = 1 MV/cm** for x = 0.28
� Physical mechanism poorly understood
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**Rim et al.
Symposium on 
VLSI 
Technology
(2002)

Performance benefits of Performance benefits of εε--Si Si primarilyprimarily from from nn--MOSFETMOSFET

Adapted 
from Leitz et 
al. J.Appl. 
Phys. 92, 
3745 (2002)

*Rim et al. IEDM
(1995).
Nayak et al. IEEE 
Trans. on Elec. 
Dev. 43, 1709 
(1996)

*Lee and Fitzgerald, 
MARCO, 2004
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Mobility enhancement in tensile and compressively strained Si
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Mobility with Strain (Courtesy: Yu)
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SiGe strain- and band-
engineered heterostructures

� Relaxed Si1-xGex virtual substrates allow 
� Si-rich alloys in biaxial tension (a║/ao > 1)

� Type-II band offset → Two-dimensional electron gas
� Barrier for holes

� Ge-rich alloys in biaxial compression (a║/ao < 1)
� Type-I band offset → Two-dimensional hole gas
� Cannot confine electrons
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Dual-channel heterostructures

� Cannot confine ψ in one channel or another
� Different from traditional buried-channel device

� ε-Si1-yGey layer beneath ε-Si boosts µeff even at large Ninv, high Eeff

� ε-Si is more than just a �cap�
� Enhanced hole mobility*, different from pseudomorphic SiGe devices

Relaxed Si1-xGex
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ψholes

ψ decays in ε-Si 
due to deep well in 
Si1-yGey
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Ge, et. al, IEDM 2003
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Sanuki, et. al. IEDM 2003
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Electronic Properties of Strained Si1-xGex

HH & LH
HH

∆Ev

∆Ec
∆4

∆6

Relaxed
Si

Strained
Si 1-x Ge x

Type-I (Compressive)

a||

a⊥

aSi



26

SiGe MOSFET Structure

� Typical MOS structure
� Si1-xGex channel with Si cap 

leads to buried channel, and 
lower gate capacitance

� Si cap
� Used for oxidation
� Also acts as a parasitic channel, 

leading to gate operating 
�window�
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Z.Shi, ..S. Banerjee  �Simulation and optimization of strained Si1-xGex 
buried channel p-MOSFETs,� Solid State Electronics, 44 (7): 1223, 2000. 
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Output, sub-threshold, 
and mobility-field 
characteristics of 
70nm Si0.9Ge0.1-SiO2
buried channel 
PHFET. 

E. Quinones,..S.Banerjee �Design, 
Fabrication, and Analysis of SiGeC
Heterojunction PMOSFETs,� 
IEEETrans.Elec.Dev., Sept. 2000.
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Subthreshold and mobility-field  characteristics for 180nm Si0.8Ge0.2-HfO2 PHFETs
and control Si PMOSFET. 
Recovery of mobility degradation for high-k gate dielectrics with enhanced-
mobility channels: (Onsongo,.., Banerjee)
T.Ngai,  J.Lee, S.Banerjee, �Electrical Properties of ZrO2 Gate Dielectric on SiGe,� Appl. Phys. Lett., 76(4), 
p. 502, Jan. 2000.
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Addition of C to Si and Si1xGex

� Carbon has a smaller lattice constant
� Strain compensation of SiGe (~8:1)
� Tensile strained Si-C on Si

� Low solubility in Si
� Need low temperature growth to incorporate 

C due to low solubility (5x1017 cm-3)
� Growth window for alloy growth

� Carbon ∆Ev=21-26meV/%C in SiGeC 
(Lanzerotti, EDL,1996)

� Ge ∆Ev=25 meV/3% Ge 

� Carbon ∆Ec=75-90 meV/%C for SiC 
� (Faschinger, APL, 1995)
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A. R. Powell, K. Eberl, B. A. Ek, and S. S. Iyer, 
"Si1-x-yGexCy growth and properties of the 
ternary system," Journal of Crystal Growth Vol. 
127, pp. 425, 1993.

K. Eberl, K. Brunner, W. Winter, 
“Pseudomorphic Si1-yCy and Si1-x-yGexCy
alloy layers on Si,” Thin Solid Films, Vol. 
294, pp. 98, 1997. 
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Carbon Strain Compensation

Red = after processing

Blue = as grown
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Si0.585Ge0.4C0.015 shows 55% drive current 
enhancement over bulk Si and 42% 
enhancement over Si0.6Ge0.4

W/L= 10/0.5 um; tox= 6 nm

S.Ray, .. S.Banerjee, �Novel SiGeC Channel Heterojunction PMOSFET,� Proc. of  Int. Elec. Dev.Meet., 1996.
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Electronic Properties of Strained Si1-xGex

� Strain splits the six fold degeneracy of 
conduction band valleys.

� The four-fold in-plane valleys are 
lowered, leading to less f-type scattering.

� Carriers have a lower out-of-plane and 
higher in-plane mass. 

� Electron mobility dependent on 
directions: increase in ⊥⊥⊥⊥ , decrease in ||

� To enhance electron mobility for the 
planar NMOSFETs, tensile strained Si
has to be used.

[001]

[010]

[10
0]

� Hole mobility increases with Ge fraction.
� Valence band splitting with strain 

results in reduced scattering.
� Reduction of effective hole mass with 

strain due to VB warpage
� Increase in both ⊥⊥⊥⊥ and || mobilities

Chen XD,.. Banerjee SK, Hole and electron mobility enhancement in strained 
SiGe vertical MOSFETs, IEEE T ELECTRON DEV 48 (9): 1975-1980 SEP 2001 
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Hole mobility in Strained SiGe
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Mobility in Relaxed SiGe
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Ge MOSFETs

� Bulk Ge has higher electron (2.5x) and hole (4x) mobility than Si, and can potentially 
lead to faster MOSFETs and more balanced N vs. PMOSFETs.

� Germanium bulk substrates brittle, lower thermal conductivity (0.6W/cm-K vs. 1.5 for Si)
� Smaller Ge bandgap than Si broadens absorption spectrum; optoelectronic integration 

on CMOS?
� Native oxide on Ge surface is not stable; GeO2 water soluble, GeO volatile at low T. 

Deposited high-k gate dielectrics promising
� Performance much worse than expected, especially for NMOSFETs, probably because 

of poor interface between Ge and high-k gate dielectric, as well as poor dopant
activation and interface between metal- source/drain 

� Higher junction leakage in Ge, especially at high T
� Higher dielectric constant in Ge leads to worse electrostatics (DIBL, SS)

1.120.66Eg (eV)

4501900µp
(cm2/Vs)

15003900µn
(cm2/Vs)

SiGe

A. Ritenour et al., IEDM, p.433, 2003

Rosenberg et al. EDL 9, 639 (1988), Shang et al. IEDM(2002), 
Chui et al. IEDM (2002), Bai et al. VLSI (2003)
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UHVCVD Ge-on-Si NMOS w/o SiGe buffer with PVD HfO2 and TaN gate
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Effect of strain in Ge layer
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�� Higher strain in the Ge layer favors high Higher strain in the Ge layer favors high µµeffeff
**

� x ≤ 0.7
� reasonable agreement with theoretical calculations**

� x ≥ 0.8 
� rampant defect nucleation in Si cap, µeff depressed 

x ↓, εGe ↑,µeff ↑

**M. V. 
Fischetti
and S. 
E. Laux, 
J. Appl. 
Phys. 
80,
(1996).
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3-D Transistor Structures
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38

Si0.9Ge0.1 (340 nm)

Buried-Oxide (100 nm)

Strained-Si (20 nm)

SiO2 (9 nm)

n+-Poly Gate
(200 nm)

Strained-Si PMOSFET on SiGe-on-Insulator

T. Mizuno et al., IEDM, 934-936 (1999)
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39Rim, et. al. & Sturm et. al. (IEDM, 2003)

SSOI with thin SiGe buffers w/o misfits 
using BPSG compliant substrates
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High mobility heterojunction transistor (HMHJT)

� A Si/SiGe/Si quantum well  is 
used to increase the drive 
current.

� The bulk punchthrough, DIBL 
and floating body effect are  
still suppressed  due to 
heterojunction in the deep 
source/drain region.

Q.Ouyang, X.Chen, ..A.Tasch, S.Banerjee, �Bandgap Engineering in Deep 
Submicron Vertical PMOSFETs,� Dev. Res. Conf., 2000.
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Energy Band Diagram and Hole 
Concentration of  HMHJT in the Channel
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Subthreshold and Output Characteristics for HMHJT
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Process Issues

� STI edge leakage can be increased by SiGe buffer.

� B diffusion enhanced by tensile strain; compressive retards it.  
Ge retards B and enhances As/P diffusion in SiGe buffer.

� Need higher doping in channel due to reduced bandgap-
negates some advantages of strain
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Defects in Strained Si
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Takagi, et. al, IEDM 2003



46

Device Metrics
� Speed

� τ = Cload VDD / Id
� Power

� P = f Cload VDD
2

� Saturation current
� IDSAT = (W/2L) (krkoA) (TEOT,INV)-1 µ (VG-VT)2

� Consider VG ⇒ VDD

� Transconductance
� gm = (W/L) (krkoA) (TEOT,INV)-1 µ VDSAT

� Off-state power
� Subthreshold swing and source/drain junction leakage


