CSWP GAZETTE

A Newsletter of the Committee on the Status of Women in Physics of the American Physical Society

May 1988

Volume 8, Issue 1

REPORT ON THE JANUARY 1988 CSWP SYMPOSIUM

In January the Committee on the Status of Women in Physics and the Committee on Opportunities in Physics presented a symposium on "Career Reentry/Retraining: Opportunities for the Midlife Physicist in Transition" at the Joint Meeting of the American Physical Society (APS) and the American Association of Physics Teachers (AAPT). Joan S. Kowalski of George Mason University chaired the session and presented an overview of the topics to be discussed. According to Dr. Kowalski, the number of students between 18 and 22 years old will decline through the year 2000. Offsetting this decline

The editor for this issue is Patricia M. Dehmer; assistant editor is Amy Halsted.

In This Issue:

- *Report on the January 1988 CSWP Symposium
- * Letters to the Editor
- *The Bottom Line
- * Colloquium Speakers List
- * APS Council Adopts
 Statement on Demeaning
 Graphic Material in the
 Workplace
- * 1988 Laura Eisenstein Award
- * Graduate Opportunities for Women
- * Current Addresses Sought

are women returning to the work force, older students, and foreign students. The purpose of the symposium was to provide information that would aid these groups to establish or continue a career in physics.

Israel S. Jacobs of General Electric reviewed information about the job opportunities and workforce statistics pertinent to new and re-entrant midlife physicists. The statistics presented were based on surveys of members of APS and AAPT. Of these members, 5% of APS members are women vs. 7.5% of AAPT members. Dr. Jacobs first described the backgrounds of members of both organizations. Surveys show that APS members:

- hold Ph.D.s (89%),
- work for academic (42%) or industrial (31%) organizations,
- consider their primary work activity to be basic research (30%), teaching (20%), applied research (21%), design/development (11%), or administrative/other (18%),
- consider their field of work to be physics (71%), engineering (12%), or other science (12%).

AAPT members:

- hold as their highest degree, a Ph.D. (58%) or M.S. (35%),
- work for universities (33%), four-year colleges (18%), junior colleges (10%), secondary schools (25%),
- consider their primary work activity to be basic research (6%), teaching (73%), applied research (4%), design/development (8%), administrative/other (12%).

Areas of concern and factors affecting the demand, supply, and type of physics jobs available are as follows:

• fewer disadvantaged students are continuing their educations,

- 40% of physics graduate students are foreign students,
- relatively more women and minorities favor theoretical specialities than men,
- more experimental physics jobs are available than theoretical (79% of industrial jobs are experimental); experimental specialties having more jobs include condensed matter, atomic, molecular, optical, and plasma physics,
- only 57.9% of physics/astronomy graduates continue to work in physics or astronomy (low in comparison with other fields),
- the retention rate for physics subfields ranges from mathematical physics (26%) to medical physics/optics (91%),
- the median age of physicists is 45 (42 years of age for industry and 47 for university),
- a shortage of secondary physics teachers exists today,
- higher admission standards for universities have an adverse effect on the supply of physicists.

Current projections indicate that the overall demand for physicists should exceed supply in the 1990s. In general, the demand for physicists will be concentrated in experimental fields.

The second speaker was Marie Machacek of Northeastern University (N.U.) who described programs N.U. has for upgrading and retraining women and men for physics, chemistry, engineering, and information systems. The programs described were developed to address the declining and inadequate number of well-trained and skilled people available in the job market. To remedy this situation, Northeastern has focused more attention on older students and their needs.

Members of the Committee

Chair Ellen Zweibel University of Colorado

Past Chair Joan S. Kowalski George Mason University Maha Ashour-Abdalla

IGPP/UCLA

Janice Button-Shafer University of Massachusetts

Patricia M. Dehmer Argonne National Laboratory

Melissa E. Franklin Harvard University

Shirley A. Jackson AT&T Bell Laboratories

Robert S. Knox University of Rochester

Kenneth B. Lyons AT&T Bell Laboratories

Frank McDonald NASA, Goddard Space Flight Ctr.

APS Liaison Miriam A. Forman SUNY, Stony Brook Amy Halsted APS Staff

AAS Liaison
Diedre Hunter
Lowell Observatory

The "CSWP GAZETTE," a quarterly newsletter of the American Physical Society Committee on the Status of Women in Physics (CSWP), is mailed free of charge to all women listed on the computerized "Roster of Women in Physics," all US physics department chairs, and others on request. Because editorial responsibility rotates among CSWP members, please address all correspondence to: "CSWP Gazette," The American Physical Society, 335 East 45 St., New York, NY 10017.

In the early 1980s, the National Science Foundation (NSF) funded a pilot program to facilitate women's entry into chemistry and physics. The program combined a set of refresher minicourses in math and science with the usual university program. The pilot program was completed in 1983. Overall, the program was successful. All twenty-five people admitted to the program (out of 400 applicants) completed the requirements. Evaluation of the pilot found that the women tended to lack confidence after being out of school a few years and needed retraining in academic/study skills. In addition, they needed to budget their time and make family adjustments to meet the demands of the program. Participants possessed certain advantages.

They had a high level of motivation, focused on goals, interacted well with faculty, and adjusted quickly to the demands of the program.

The curriculum was judged to have been flexible enough to meet individual needs, but the math and science refresher courses were too short. The program did provide valuable hands-on experience with computers, electronics, laboratory work, and design projects. One essential component of the program was the availability of financial aid. Career counseling was available to participants but was seldom used. Areas for improvement included standardization of requirements and improvement of job placement.

Additional programs exist to help men and women obtain advanced education in engineering and information systems. These programs were oriented toward meeting the needs of local business, and in the case of the information systems department included a work/study program.

Two women spoke about "What the Physicist in Transition Can Do for Herself." Jean Toth-Allen of George Mason University addressed re-entry issues. Dr. Toth-Allen had earned a Ph.D. in biophysics but left her field to raise a family when research money became scarce. Re-entry into physics was further delayed by job transfers relating to her husband's career.

After several years out of the job market, Dr. Toth-Allen's concerns included the currentness of her training, the difficulty in learning about job opportunities in her field, and the challenge of convincing an employer to hire someone who has been out of the job market. In her efforts to find a position in her field, Dr. Toth-Allen tried the traditional strategies of networking and job placement services.

The step she took that resulted in her current position at George Mason University was not a traditional one. Dr. Toth-Allen attended a job re-entry program offered in Fairfax County, Va. In this program, she was advised to attend a workshop at which she made a contact which led to part-time employment in the George Mason University Physics Department. The opportunity to get involved in teaching provided a good re-

orientation to her field, helped her rebuild her confidence and eventually led to a permanent position with the school.

The final speaker discussed her experiences in making the transition to physics after having established a career in a different field. Margot Durrett of AT&T Bell Laboratories described how she arrived at the decision to go back to school and pursue a physics career. The decision-making process included the identification of personal and family goals, job opportunities, and careerrelated issues that determined her level of interest in physics, the sacrifices she was willing to make, and the risks she was willing to take. An important component to planning a physics career is to set short-term, intermediate, and long-term goals which are re-examined and adjusted as circumstances change.

Ms. Durrett described the steps she took and the help received from various sources. These included: researching information about physics careers in existing literature, speaking with physics professors and scientists who were willing to describe their experiences, and joining professional societies which provided a forum for meeting physicists and getting involved in the field.

Obstacles to making a mid-career transition to physics include the small number of women in physics, the difficulty of combining work and school, and the sense of isolation felt when taking courses part-time and not living on campus. Ms. Durrett ended by emphasizing the importance of career planning, setting goals, and periodically revising objectives to reflect changing circumstances.

The session on Re-entry and Retraining concluded with a reception which encouraged discussion between participants and members of the audience.

M. Durrett AT&T Bell Laboratories Room 14C-359 Whippany Road Whippany, NJ 07981-0903 (201) 386-2579

LETTERS TO THE EDITOR

Dear Dr. Forman:

I am impelled to answer Laura M. Hinkelman's letter (December 1987)

because it is so important that women with a conscience not drop out of physics. One reason among others for the diversion of physics away from socially useful applications is the scarcity of physicists with a strong moral sense. Our culture of a war economy saddled by greed forces applications of science which Ms. Hinkelman cannot approve. Physics is not alone. Biology and chemistry serve military purposes; the space program has been diverted from its scientific goals, Star Wars consumes excessive amounts of money and scientific personnel. Even the great technology of television is used mainly for the stupifaction of the populace and the brutalization of children.

Recognition of all this need not lead to despair. Moral action can influence events. Television has its Sesame Street, biology its medical applications, chemistry its betterment of living. What one can do, as a physicist, depends on how quickly one wants to see results. In the same December issue there is an appeal for APS Congressional Scientist Fellows. Informed congressmen can help turn things around. Another worthwhile endeavor is helping the general public through education in physics, to judge issues in which their fate is involved. So is research in areas which defend the ecology, promote health, seek new energy sources. To stay in pure physics may be harder to defend. except that the better one's training, the more one's influence.

My generation of physicists was forced to grapple with this problem after Hiroshima. A few of us left physics; most stayed. Physicists then fought to keep atomic energy in civilian hands. Every physicist of conscience who leaves the field weakens the forces for good. Profound issues are at stake; they cannot be left to the indifferent and the unknowing.

Sincerely, Selma Blazer Brody Ph.D. 1942

19 April 1988

Dear Editor:

This is in response to a letter from Laura M. Hinkelman which appeared in the December 1987 issue of the CSWP Gazette. She expresses concern about the moral issues in certain physics jobs. For individuals who feel they would like to use their physics backgrounds to directly benefit humanity I believe the

field of Medical Physics is worth serious consideration. This rapidly growing field needs dedicated people with strong physics backgrounds. There are research-type jobs that involve little direct communication with patients and other jobs that are strongly clinically oriented. Training in Medical Physics for people who already have physics degrees is available at a number of institutions, many of which advertise in *Physics Today*. Interested parties could contact the American Association of Physicists in Medicine at 335 East 45 St., New York, NY 10017.

Sincerely yours, Dr. Arlene J. Lennox Department Head Fermilab Neutron Therapy Facility

25 February 1988

Dear Editor:

In response to the letter from Laura M. Hinkelman, "Careers in Physics: Ethical Choices," (Volume 7, Issue 4, December 1987), I would like to bring to her attention a publication by Professor Charles Schwarz of the University of California at Berkeley. Professor Schwarz has published a booklet. "Career Information for the Socially Responsible Physics Student" which might be useful to Laura and all of us who wrestle with the problem of guiding science and engineering students to careers that are compatible with their value choices. It is a publication that helps to inform people about the extent of military research in science and technology, even in academic institutions. and can be obtained from:

> Charles Schwarz Professor of Physics University of California Berkeley, CA 94720

Thank you.

Sincerely,
Indira Nair
Associate Department Head
Department of Engineering
and Public Policy
Carnegie-Mellon University
Pittsburgh, Pennsylvania

9 February 1988

Dear Editor:

Some time ago there was a suggestion in the CSWP Gazette that women who had left the workplace and later re-

turned write of their experiences. I didn't get to it then, but recently I received an inquiry from a young (30) woman who had read the brief biography accompanying a paper on which I was a coauthor and wondered how I "did it." So I'm revising my response for you.

After receiving my M.S. in Physics I worked for ten years in the Solid State Division at the Naval Ordnance (now Surface Weapons) Laboratory and then left to be married. When I decided to go back to work after 18 years I considered several different things, but soon realized that something technical was the only field that I wouldn't find boring and would suit me. Local branches of companies like IBM and HP weren't interested so I concentrated on the Bureau of Standards since I had "status" (previous time) with the government. After nearly a year and frequent trips to the personnel office an opening turned up, there were hardly any openings for physicists during that time. Since neither they nor I really knew what I could do, I started in a temporary appointment at the same grade level at which I started after receiving my M.S.

There certainly had been a lot of developments since I resigned, in fact, the Josephson effect was discovered about the time I quit, and computers were just coming into general use. So there were lots of new things to learn. Although I haven't done very well with the theory of Josephson junctions and the associated cryoelectronic circuits, I do seem to get along well in the laboratory and that is what was, and still is, needed. I've learned to help design and layout patterns using a computer program, make masks, use photolithography and run vacuum systems to fabricate multilayer superconducting chips of a lot of different types of circuits. For the last several years I've worked on the new 1 volt voltage standard (and a 10 volt standard is coming along). I've also helped with testing on occasion. So it's been satisfying to be able to see things through from start to finish and, being the main person doing fabrication, my name has appeared on quite a few papers.

I've never worried about "equal rights," but actually, being a woman was some help in obtaining this job and retaining (thanks to EEO) my previous one when there was a large RIF. Even now I

would think women have an advantage if they leave the working world to stay home with their children as raising children is an acceptable reason for being "unemployed" for a sizable period of time. It also seems to me that if one has the inclination and education for scientific work that it is easy to "restart" though it may take some time to feel reestablished. I was asked several times if I minded doing something different than I had before, as it turns out, I like this work better. My only regret is that I haven't made more effort to understand the physics of this field, my math failed me and the lunchtime review course I took wasn't enough. Actually, though, I've had plenty to keep me busy. Now I'm planning to retire in about a year (after I sell my house!).

I do feel that I was fortunate to find a satisfying job I could do and to work with a very nice group of people who seem to appreciate my efforts (and have given me promotions).

I enjoy reading the CSWP Gazette and when I retire I will send you my new address in hopes that you will continue to send it.

Sincerely, Frances L. Lloyd National Bureau of Standards Boulder, Colorado

12 January 1988

Dear Editor:

I was interested to read Barbara Wilson's report on the WISE conference in the November 1987 *Gazette*, in particular the comments by Leslie Parker of the Secondary Education Authority of Western Australia.

I suspect the U.S. is fortunate that, in attempting to increase the participation of girls and women in science, it has adopted a different approach to that outlined by Leslie Parker. The premise that the structure of science requires modification to accommodate the "interests and lifestyles" of women appears to be gaining credence among educationalists, but most women scientists I have spoken to have very little patience with the idea. The examples given by Leslie Parker to illustrate the "masculinized" structure of science do not appear to be inherently more appealing to one particular sex.

In my opinion, the major impediment to the full participation of girls in science at the tertiary level is the lack of appropriate grounding in high school. Girls still are not making the right subject choices early on, and recent changes to the high school system in Western Australia (which are designed to allow a much wider subject choice) will only exacerbate the situation. Girls do not give up science because they find the structure of science too masculine—they never take it up in the first place!

I believe the only way to overcome the apparent fear girls have of science is to increase their exposure to it, by making science (particularly physics and chemistry) and mathematics compulsory subjects in high schools. Then at least they will be able to make an informed decision about whether or not science is for them. It would also have the added benefit (in line with the stated aims of many governments) of increasing the scientific and technical literacy of the populace.

Yours sincerely, Dr. Birgit Lohmann Physics Programme Murdoch University Western Australia

17 February 1988

Dear Editor:

I am responding to your request for comments concerning companies arrangements for parental leave and child care. I think it is an excellent idea to collect and disseminate this information. Perhaps when we unite and become a strong voice more companies will be responsive to the needs of women scientists and engineers.

I work for Texas Instruments in Dallas, Texas. There is no company provision for day care. In fact, children under the age of 12 are not permitted on the work site. There is no company set paternity leave policy. Maternity leave is treated as a medical leave of absence. Up to eight weeks of leave, either totally or partially paid (depending on how long one has been with the company) are given. Time taken off before the birth of a child is regarded as personal leave and is unpaid. An employee is guaranteed a job of similar status, pay, and seniority on returning from a maternity leave.

There is some flexibility for professionals in the research laboratory in terms of the times which they come in and leave.

A professional is pretty free to come in any time between 7 and 9 a.m. and leave anytime between 4 and 6 p.m. In production and manufacturing areas, professionals have the flexibility of perhaps finding a position on a different work shift. In this way, a mother and a father could work on different shifts and therefore limit the need for paid child care.

In general, my experience has been that industry is fairly slow to respond to the needs of women scientists and engineers. This is largely because while there is an increasing number of women engineers and scientists employed by industry, most women are congregated in low entry-level positions and not in managerial or policy-making positions.

I would be very interested in learning how other women engineers and scientists respond to this question. I understand that CATALYST has compiled quite a bit of information on employees who provide on-site and off-site day care benefits.

Name withheld by request.

THE BOTTOM LINE

Last February CSWP received the following letter from a valiant woman physics student, who ran into a Catch-22 in pursuing her studies:

"I am currently enrolled as a physics major at —— State University. I am a returning adult student, being of age 40. At present I have junior status. Last year I received an Honors Scholarship for the sum of \$1000. I so far have been able to maintain all A's. One of the conditions I must meet in order to retain the scholarship is to carry a minimum of 25 semester hours a year. I have found this impossible to do, and continue to do the quality of work I am capable of. I am married and have three children still at home and must drive a good distance to campus. Trying to make all of this work has proved to be unrealistic. I therefore must cut back my course load to 10 hours this semester. Of course this means I will forfeit my scholarship. I am hoping there is money available to me from other sources my college financial aid office is not aware of. My plan is to continue on to graduate work, but I feel I must pace myself reasonably so as not

(continued on page 5)

PHYSICS COLLOQUIUM SPEAKERS LIST

compiled by the

COMMITTEE ON THE STATUS OF WOMEN IN PHYSICS

April 24, 1988

- Sec. I: Speakers by geographic area, with address and phone numbers.
- Sec. II: Talk titles by physics subfield, with speakers' names and affiliations.

I. PHYSICS COLLOQUIUM SPEAKER INFORMATION, 1988/1989

This first section lists speakers, with addresses and phones, by geographic area (alphabetically within each subsection), together with references to the sections where talk titles appear. The '*' identifies those listed in the section for GENERAL AUDIENCES. The section abbreviations in brackets are used for reference in the second section.

NORTHEAST [NE]

*Prof. Karen Barad
Columbia Univ.,Barnard College, Physics Dept
New York, NY 10027
(212) 280-5102
NUCLEAR AND PARTICLE PHYSICS

Prof. Jill C. Bonner Univ. of Rhode Island, Phys. Dept Kingston, RI 02881 (401) 792-2633 CONDENSED MATTER PHYSICS

Dr. Eva Bozoki
Brookhaven National Lab, Bldg 725C
Upton, NY 11973
(516) 751-8128
NUCLEAR AND PARTICLE PHYSICS

Prof. Jañice Button-Shafer
Univ. of Massachusetts, Physics Dept
LGR Tower C; Amherst, MA 01003
(413) 545-2140
ENVIRONMENTAL & ENERGY PHYSICS
NUCLEAR AND PARTICLE PHYSICS

Dr. Ling-Lie Chau
Brookhaven National Lab, Physics Dept
Bldg 510A; Upton, NY 11733
(516) 282-3768
NUCLEAR AND PARTICLE PHYSICS

Dr. Deborah D. L. Chung SUNY, Dept. of Mech. & Aerospace Eng. 613 Furnas Hall; Buffalo, NY (716)-636-2520 CONDENSED MATTER PHYSICS INTERFACE AND DEVICE PHYSICS

Prof. Jolie A. Cizewski Rutgers Univ., Serin Physics Lab PO Box 849; Piscataway, NJ 08854 (201) 932-3884 NUCLER AND PARTICLE PHYSICS

*Dr. Beverly S. Cohen
Inst. of Environmental Medicine
NY Univ. Med. Ctr.
Longmeadow Rd., Tuxedo NY 10987.
(914) 351-5277
BIOLOGICAL AND MEDICAL PHYSICS
ENVIRONMENTAL & EMERGY PHYSICS

Dr. Esther Conwell Xerox Webster Research Center 800 Phillips Rd.; Webster, NY 14644. (716) 422-4633 CONDENSED MATTER PHYSICS

Dr. Stephanie B. DiCenzo
AT&T Bell Laboratories, 1D-429
600 Mountain Ave.; Murray Hill, NJ 07974
(201) 582-6578
CONDENSED MATTER PHYSICS

Dr. Mildred Dresselhaus Massachusetts Inst. of Tech., 13-3005 Cambridge, MA 02139 (617) 253-6864 INTERFACE AND DEVICE PHYSICS CONDENSED MATTER PHYSICS

Dr. Georgia Fisanick AT&T Bell Laboratories, 1A-365A 600 Mountain Ave.; Murray Hill, NJ 07974 (201) 582-2204 CONDENSED MATTER PHYSICS

Dr. Laura H. Greene Bellcore, 3X-281 331 Newman Springs Rd. Red Bank, NJ 07701 (201) 758-2940 CONDENSED MATTER PHYSICS INTERFACE AND DEVICE PHYSICS

Dr. Martha P. Haynes
Cornell Univ, Space Sciences
Space Sciences Building; Ithaca, NY 14853
(607) 255-0610
ASTROPHYSICS

Prof. Judith Herzfeld Brandeis Univ., Chemistry Dept Waltham, MA 02254 (617) 736-2538 CONDENSED MATTER PHYSICS

Dr. Shirley A. Jackson
AT&T Bell Labs, 1D-337
600 Mountain Ave.; Murray Hill, NJ 07974
(201) 582-6664
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Barbara A. Jones
Lyman Laboratory of Physics
Harvard University; Cambridge, MA 02138
(617) 495-5641
CONDENSED MATTER PHYSICS

Dr. Christine Jones
Harvard-Smithsonian Center for Astrophysics
60 Garden Street; Cambridge, MA 02138.
(617) 495-7137
ASTROPHYSICS

Dr. Kathleen Kash
Bellcore, 3G-113; 331 Newman Springs Rd.
Red Bank, NJ 07701
(201) 758-2845
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

*Dr. Sonja Krause
Rensselaer Polytechnic Inst., Chemistry Dept.
Troy, NY 12180-3590.
(518) 266-8445
MOLECULAR AND POLYMER PHYSICS

Prof. Jacqueline Krim
Northeastern Univ., Physics Dept
Boston, MA 02115
(617) 437-2929
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Carmay Lim
Harvard Univ., Chemistry Dept
12 Oxford St.; Cambridge, MA 02138
(617) 495-1775 or 254-0175
BIOLOGICAL AND MEDICAL PHYSICS
CHEMICAL AND STATISTICAL PHYSICS
INTERFACE AND DEVICE PHYSICS

Prof. June L. Matthews MIT, Physics Dept, 26-435 Cambridge, MA 02139 (617) 253-4238 NUCLEAR AND PARTICLE PHYSICS

Dr. Susan R. McKay Univ. of Maine, Physics Dept Orono, ME 04469 (207) 581-1019 CHEMICAL AND STATISTICAL PHYSICS CONDENSED MATTER PHYSICS

Dr. Patricia M. Mooney
IBM Watson Research Center; P.O.Box 218
Yorktown Heights, NY 10598
(914) 945-3445
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Cherry A. Murray
AT&T Bell Labs, 1D-334
600 Mountain Ave.; Murray Hill, NJ 07974
(201) 582-5849
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Prof. Gertrude F. Neumark
Columbia Univ., Dept. of Materials Science
Seeley W. Mudd Bldg; New York, NY 10027
(212) 280-8267
CONDENSED MATTER PHYSICS

Dr. Marilyn E. Noz NYU, Dept of Radiology 550 First Ave.; New York, NY 10016 (212) 340-6371 NUCLEAR AND PARTICLE PHYSICS

Dr. Mary Jo Ondrechen
Northeastern Univ., Chemistry Dept
Boston, MA 02115
(617) 437-2856
CONDENSED MATTER PHYSICS

Dr. Elga Pakulis
IBM Watson Research Center
PO Box 218; Yorktown Heights, NY 10598.
(914) 945-2839
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Sathyavathi Ramavataram Brookhaven Natl Lab Dept of Nuclear Energy, Bldg 197D Upton, NY 11973 (516) 282-5097 or -2901 or -2902 NUCLEAR AND PARTICLE PHYSICS

Dr. Martha H. Redi Princeton Univ., Plasma Physics Lab, LOB-B160 Princeton, NJ 08544 (609) 683-3357 FUID AND PLASMA PHYSICS

*Dr. Lynn F. Schneemeyer
AT&T Bell Labs, 1A-363
600 Mountain Ave.; Murray Hill, NJ 07974
(201) 582-5318
CONDENSED MATTER PHYSICS

Dr. Sara A. Solla AT&T Bell Labs, 4G-336 Crawford Corner Rd.; Holmdel, NJ 07733 (201) 949-6057 BIOLOGICAL AND MEDICAL PHYSICS CHEMICAL AND STATISTICAL PHYSICS GEOPHYSICS

Dr. Gwo-Ching Wang Rensselaer Polytechnic Inst., Physics Dept. Troy, NY 12181 (518) 785-9573 CONDENSED MATTER PHYSICS INTERFACE AND DEVICE PHYSICS

*Dr. Margaret H. Weiler
Raytheon Co., Research Division
131 Spring St.; Lexington, MA 02173
(617) 860-3100
INTERFACE AND DEVICE PHYSICS

*Dr. Alice E. White
AT&T Bell Labs, 1E-433
600 Mountain Ave.; Murray Hill, NJ 07974
(201) 582-2506
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

*Dr. Barbara A. Wilson
AT&T Bell Labs, 6F-207
600 Mountain Ave.; Murray Hill, NJ 07974
(201) 582-3973
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Jane E. Zucker AT&T Bell Labs, 4F-319; Holmdel, NJ 07733 (201) 949-1077 CONDENSED MATTER PHYSICS INTERFACE AND DEVICE PHYSICS

EAST-CENTRAL [EC]

Dr. Carol Jo Crannell
NASA Goddard Space Flight Center
Code 682; Greenbelt, MD 20771.
(301) 344-5007
ASTROPHYSICS

Dr. Judy R. Franz
Dept. of Physics; West Virginia Univ.
Morgantown, WV 26506.
(304) 293-3422
CONDENSED MATTER PHYSICS

Dr. Sandra C. Greer
Univ. of Maryland, Chemistry Dept
College Park, MD 20742
(301) 454-6093
CHEMICAL AND STATISTICAL PHYSICS
MOLECULAR AND POLYMER PHYSICS

Dr. Marsha I. Lester
Univ. of Pennsylvania, Chemistry Dept.
Philadelphia, PA 19104
(215) 898-4640
CHEMICAL AND STATISTICAL PHYSICS

Dr. Rosemary A. MacDonald National Bureau of Standards Physics A 105; Gaithersburg, MD 20899. (301) 975-2481 CONDENSED MATTER PHYSICS ENVIRONMENTAL & EMERCY PHYSICS

Dr. Laurie E. McNeil
Univ. of North Carolina, Phillips Hall 039A
Dept. of Physics & Astronomy
Chapel Hill, NC 27514
(919) 962-7204
CONDENSED MATTER PHYSICS

Prof. Eugenie V. Mielczarek George Mason Univ., Physics Dept 4400 University Dr.; Fairfax, VA 22030 (703) 323-2303 BIOLOGICAL AND MEDICAL PHYSICS

Dr. Julia A. Thompson
Univ. of Pittsburgh, Physics Dept
Pittsburgh, PA 15260
(412) 624-9060
NUCLEAR AND PARTICLE PHYSICS

SOUTHEAST [SE]

Dr. Juliette W. Ioup
Univ. of New Orleans, Physics Dept.
New Orleans, LA 70148
(504) 286-6715
GEOPHYSICS
CONDENSED MATTER PHYSICS
CHEMICAL AND STATISTICAL PHYSICS

*Dr. Reeta Vyas
Univ. of Arkansas, Physics Dept.
Fayetteville, AR 72701
(501) 575-7286 or 521-1179
NUCLEAR AND PARTICLE PHYSICS

MIDWEST [MW]

Dr. Susan D. Allen
Ctr for Laser Science and Engineering
University of Iowa; Iowa City, Iowa 52242
(319) 335-1309 or -1299
INTERFACE AND DEVICE PHYSICS

Dr. Sheila Bailey
NASA Lewis, MS 302-1; Cleveland, OH 44135
(216) 433-2228
ASTROPHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Mary L. Brake
Univ. of Michican, Dept of Nuclear Eng.
Cooley Bldg, North Campus
Ann Arbor, MI 48109
(313) 764-1976
FULLD AND PLASMA PHYSICS

Dr. Meera Chandrasekhar
Univ. of Missouri, Physics Dept
Columbia, MO 65211
(314) 882-2619
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Bunny C. Clark
Ohio State U., Physics Dept.
174 W. 18th Ave.; Columbus, Ohio 43210
(614) 292-1843
NUCLEAR AND PARTICLE PHYSICS

Dr. Denice Denton
Univ. of Wisconsin, Dept of Elec. & Comp. Eng.
1415 Johnson Dr.; Madison, WI 53706
(608) 263-2354
CONDENSED MATTER PHYSICS

Dr. Joanne K. Fink
Argonne Natl Lab, Reactor Anal. and Safety
9700 Cass Ave., Bldg 206; Argonne, IL 60439
(312) 972-6512 or -4103
ENVIRONMENTAL & ENERGY PHYSICS

Dr. Suzanne Gronemeyer Siemens Medical Systems 1906 Craigshire; St. Louis, MO 63146. (314) 725-7075 BIOLOGICAL AND MEDICAL PHYSICS

Dr. Caroline L. Herzenberg Argonne National Lab. EES Division, Bldg. 362; Argonne, IL 60439. (312) 972-3026

Dr. Lorella M. Jones
Univ. of Illinois, Physics Dept
1110 Green Street; Urbana, IL 61801
(217) 333-4270
NUCLER AND PARTICLE PHYSICS

FDr. Arlene J. Lennox
Fermilab, MS-301
PO Box 500; Batavia, IL 60510
(312) 840-4850
BIOLOGICAL AND MEDICAL PHYSICS

B. K. Lunde 2209 S.W. Park Ave.; Des Moines, IA 50321 (515) 286-7237 ENVIRONMENTAL & ENERGY PHYSICS

Dr. Nancy D. Morrison
Univ. of Toledo, Ritter Observatory
Toledo, OH 43606
(419) 537-2659

ASTROPHYSICS

Dr. Kathie Newman
Univ. of Notre Dame, Physics Dept
Notre Dame, IN 46556
(219) 239-7182
CHEMICAL AND STATISTICAL PHYSICS
CONDENSED MATTER PHYSICS

Dr. Talat S. Rahman
Kansas State Univ., Physics Dept
Cardwell Hall; Manhattan, KS 66506
(913) 532-6786
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Petra Schmalbrock
Ohio State Univ, MRI Facility
1630 Upham Dr., Columbus, OH 43210
(614) 293-8181
BIOLOGICAL AND MEDICAL PHYSICS

Dr. Junko Shigenitsu
Ohio State Univ, Physics Dept
Columbus, OH 43210
(614) 292-1786
NUCLEAR AND PARTICLE PHYSICS

^{*}Dr. Sallie A. Watkins 1081 S. Lynx Drive; Pueblo West, CO 81007 (719) 547-2416 NUCLEAR AND PARTICLE PHYSICS

Dr. Audrey V. Wegst 5420 Pawnee; Fairway, KS 66205 (913) 831-1943 or 384-6090 BIOLOGICAL AND MEDICAL PHYSICS

NORTHWEST [NW]

Prof. Geraldine L. Richmond
Univ of Oregon, Chemical Physics Inst.
Eugene, OR 97403
(503) 686-4635
BIOLOGICAL AND MEDICAL PHYSICS
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS
MOLECULAR AND POLYMER PHYSICS

SOUTHWEST [SW]

Dr. Nancy J. Brown
Lawrence Berkeley Lab, Bldg 29C
Berkeley, CA 94720
(415) 486-4241
CHEMICAL AND STATISTICAL PHYSICS
ENVIRONMENTAL & ENERGY PHYSICS

Dr. Bonnie J. Buratti
CalTech, Jet Propulsion Lab
4800 Oak Grove Dr., Rm. 183-501
Pasadena, CA 91109
(818) 354-7427
ASTROPHYSICS

*Dr. Bel Campbell
Dept. of Physics & Astronomy
Univ. of New Mexico; Albuquerque, NM 87131.
(505) 277-5148 or -2616

ASTROPHYSICS

Dr. Shirley Chiang
IBM Almaden Research Center
650 Harry Rd.; San Jose, CA 95120-6099
(408) 927-2419
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Lynn R. Cominsky
Dept. of Physics and Astronomy
Sonoma State Univ.; Rohnert Park, CA 94928.
(707) 664 2655

Dr. Flonnie Dowell
Los Alamos Natl Lab, Theoretical Div.
Univ. of California, MS-B221
Los Alamos, NM 87545
(505) 667-8765 or -5819
MOLECULAR AND POLYMER PHYSICS
CONDENSED MATTER PHYSICS

Dr. Prabha Durgapal Welex, Research Dept PO Box 42800; Houston, TX 77242 (713) 496-8305 GEOPHYSICS

Dr. Katherine Freese
Inst. for Theoretical Physics
U. C. Santa Barbara; Santa Barbara, CA 93106.
(805) 961-4111
ASTROPHYSICS

Dr. Luisa F. Hansen
Lawrence Livermore National Lab
PO Box 808, L-405; Livermore, CA 94550
(415) 422-4512
ENVIRONMENTAL & ENERGY PHYSICS
NUCLEAR AND PARTICLE PHYSICS

Dr. Gail G. Hanson
Stanford Linear Accelerator, Bin 78
PO Box 4349; Stanford, CA 94305
(415) 854-3300 ext 2510
NUCLEAR AND PARTICLE PHYSICS

Dr. Deborah Jackson
Hughes Research Labs, MS RL66
3011 Malibu Canyon Rd.; Malibu, CA 90265
(213) 317-5823
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Deborah A. Konkowski 1139 Mountain Gate Rd.; Upland, CA 91786 NUCLEAR AND PARTICLE PHYSICS

Dr. Karie Meyers
Occidental College, Physics Dept
Los Angeles, CA 90041
(213) 259-2821

ASTROPHYSICS

Dr. Marjorie Olmstead UC-Berkeley, Physics Dept Berkeley, CA 94720 (415) 643-8045 CONDENSED MATTER PHYSICS INTERFACE AND DEVICE PHYSICS Dr. Carmen Ortiz IBM, K32; 650 Harry Rd. San Jose, CA 95120 (408) 927-2481 CONDENSED MATTER PHYSICS INTERFACE AND DEVICE PHYSICS

*Dr. Elizabeth A. Rauscher
Tecnic Research Labs.
64 Santa Margarita; San Leandro, CA 94579.
(415) 352-7104
NUCLEAR AND PARTICLE PHYSICS

Dr. Helen L. Reed Arizona St. Univ, Mech/Aerospace Eng Tempe, AZ 85287 (602) 965-2823 FLUID AND PLASMA PHYSICS

Dr. Anneila Sargent CalTech, Downs Lab of Physics, 320-47 Pasadena, CA 91125 ASTROPHYSICS

Dr. Roberta P. Saxon SRI International, PN 093 333 Ravenswood Ave.; Menlo Park, CA 94022 (415) 859-2663 CHEMICAL AND STATISTICAL PHYSICS

Prof. Jodye Selco
Univ. of Redlands, Physics Dept
PO Box 3080; Redlands, CA 92373-0999
(714) 793-2121
CHEMICAL AND STATISTICAL PHYSICS

Prof. Mary Beth Stearns
Arizona State Univ., Physics Dept
Tempe, AZ 85287
(602) 965-1606
INTERFACE AND DEVICE PHYSICS
CONDENSED MATTER PHYSICS

*Dr. Judith A. Todd
USC, Dept Mat. Sci./Mech. Eng
VHE 718-0241; Los Angeles, CA 90089-0241
(213) 743-4966
CONDENSED MATTER PHYSICS

Tor. Virginia Trimble
UC-Irvine, Physics Dept.; Irvine, CA 92717
(714) 856-6948
ASTROPHYSICS

FOREIGN [FO]

Dr. Renee D. Diehl
Univ. of Liverpool, Physics Dept
Liverpool L69 3BX; UK
051-709-6022, ext. 2260
CONDENSED MATTER PHYSICS

II. COLLOQUIUM TITLES BY FIELD

This second section lists the speakers and titles, grouped by physics subfield and alphabetically by speaker within each group. Refer to the first section for address and phone information on the speakers. The two-character abbreviation after each name refers to a geographic region in the first section.

ASTROPHYSICS	Prof. Geraldine L. Richmond, Univ. of OR [NW]	Dr. Esther Conwell, Xerox [NE]
Dr. Sheila Bailey, NASA 1. Advances in photovoltaics	1. The spectroscopy of metal ions bound to proteins	Solitons and polarons in polyacetylene Differences between one- and three-dimensional semiconductors
2. Space photovoltaics	Dr. Petra Schmalbrock, Ohio State [MW] 1. Magnetic resonance imaging and spectroscopy	
Dr. Bonnie J. Buratti, Caltech/JPL [SW] 1. The icy satellites of Jupiter and Saturn 2. The Mars observer mission: Return to the red planet	Investigations of flow with magnetic resonance Pulse sequence development for magnetic resonance imaging	Dr. Denice Denton, Univ. of Wisconsin [MW] 1. Effects of moisture on the electrical properties of polyimide films
Dr. Bel Campbell, Univ. of NM [SW] 1. Disks and jets in star formation	Dr. Sara A. Solla, AT&T [NE] 1. Statistical mechanics of neural networks	Dr. Stephanie B. DiCenzo, AT&T [NE] 1. Photoelectron spectroscopy of supported metal
Dr. Lynn R. Cominsky, Sonoma State Univ. [SW] 1. Discovery of eclipses from an x-ray burst source 2. X-ray and x-ray reprocessing 3. The extreme ultra-violet explorer satellite	Dr. Audrey V. Wegst, [MW] 1. Medical physics in diagnostic radiology 2. Quality control in nuclear medicine and diagnostic radiology 3. Placental transfer of radionuclides and fetal radiation dose	Clusters: The molecular-metallic transition Dr. Renee D. Diehl, Univ. of Liverpool [FO] 1. LEED studies of alkali metals adsorbed on transition metals
Dr. Carol Jo Crannell, NASA [EC] 1. Imaging high-energy emissions from solar flares 2. Using balloon-borne platforms for observations of solar flares		Dr. Flonnie Dowell, Los Alamos [SW] 1. Molecular modeling of complex materials 2. New phase and molecule predictions for partially-ordered chains
3. The physics of high-energy solar processes in solar flares	Dr. Nancy J. Brown, Lawrence Berkeley Lab. [SW] 1. Theoretical and experimental chemical kinetics 2. Energy transfer	Dr. Mildred Dresselhaus, MIT [NE] 1. Intercalation and superlattices
Dr. Katherine Freese, UCSB [SW] 1. Fundamental physics and dark matter 2. Baryogenesis: An explanation of the	Dr. Sandra C. Greer, Univ. of MD 1. Chemical reactions and critical points [EC]	2. Liquid carbon
matter/antimatter content of the universe 3. Magnetic Monopoles and cosmology	Equilibrium polymerization as a phase transition	Dr. Georgia Fisanick, AT&T [NE] 1. Periodic Structures in laser-materials interactions
Dr. Martha P. Haynes, Cornell Univ. [NE] 1. Extragalactic sociology: Environmental effects on galaxy evolution	The always-convergent iterative technique of deconvolution	Dr. Judy R. Franz, West Virginia Univ. [EC] 1. Do Coulomb gaps exist? 2. Metal-nonmetal transitions in expanded liquid mercury
2. Large-scale structure in the universe Dr. Christine Jones, Harvard [NE]	Dr. Marsha I. Lester, Univ. of PA [EC] 1. Photodissociation and photoionization of van der Waals complexes	Dr. Laura H. Greene, Bellcore [NE] 1. High Tc oxide superconductors
Hot Gas in early type galaxies Einstein x-ray images of the structure of clusters of galaxies	Dr. Carmay Lim, Harvard [NE] I. Nonequilibrium effects in chemical kinetics	2. Heavy fermion (ČeCuó)/Nb multilayers: Proximity effects 3. Metallic superlattices
Dr. Karie Meyers, Occidental College 1. Variability in Seyfert Galaxies [SW]		Prof. Judith Herzfeld, Brandeis Univ. [NE] 1. Liquid crystalline phases in reversible assembling systems: Nonideality and growth
Dr. Nancy D. Morrison, U. of Toledo [MW] 1. The fundamental properties of massive stars	thermodynamics 2. Spin glasses and chaos	Dr. Juliette W. Ioup, Univ. of New Orleans [SE]
Dr. Anneila Sargent, Caltech 1. Star formation [SW]	3. Renormalization group methods and exactly- solvable models of phase transitions	Orthogonality of measured normal modes in underwater acoustics
2. Millimeter wave interferometry of star-forming regions	Dr. Kathie Newman, Notre Dame [MW] 1. Ordering transitions in semiconductors	Dr. Deborah Jackson, Hughes Research [SW] 1. Teaching old atoms new tricks 2. Interference effects between different optical har-
Dr. Virginia Trimble, USC 1. Existence and nature of dark matter in the universe [SW]	Dr. Roberta P. Saxon, 1. Theoretical studies of multiphoton processes	monics
2. Supernova: Bigger and better bangs 3. A field guide to the binary stars	Prof. Jodye Selco, Univ. of Redlands [SW] 1. Spectroscopy and kinetics of transient species	Dr. Shirley A. Jackson, AT&T [NE] 1. Magnetic polarons in diluted magnetic semiconductor superlattices 2. Zone-folding and quasi-direct optical transitions
BIOLOGICAL AND MEDICAL PHYSICS	Dr. Sara A. Solla, AT&T [NE] 1. A statistical mechanics approach to optimization problems	in semiconductor superlattices 3. Excitonic magnetic polaron effects in stressed diluted magnetic semiconductors
Dr. Beverly S. Cohen, NYU Med. Ctr [NE] 1. Deposition of ultrafine particles on the human tra- cheobronchial tree: A determinant of the dose from radon daughters	2. Statistical mechanics of neural networks CONDENSED MATTER PHYSICS	Dr. Barbara A. Jones, Harvard [NE] 1. The two-impurity Kondo model: Numerical renormalization group study
2. Sampling airborne particles for estimation of inhalation exposure	Prof. Jill C. Bonner, Univ. of RI 1. Spin-Peierls transitions [NE]	Dr. Kathleen Kash, Bellcore [NE] 1. Optical properties of microstructures
Dr. Suzanne Gronemeyer, Siemens Med. Sys. [MW. 1. Clinical magnetic resonance imaging	2. Quantum effects in spin dynamics	Prof. Jacqueline Krim, Northeastern Univ. [NE] 1. Wetting and nonwetting of solid rare-gas films on
Dr. Arlene J. Lennox, [MW 1. Neutrons against cancer: The clinical experience at Fermilab	1. Quantum wells under hydrostatic pressure	metal and graphite surfaces
Dr. Carmay Lim, Harvard [NE 1. Enzyme catalysis: Mechanism of ribonuclease A	1. Scanning tunnelling microscopy of metals on sem-	Dr. Rosemary A. MacDonald, NBS [EC] 1. Thermophysical properties of cubic metals 2. Heat capacity of coal
Prof. Eugenie V. Mielczarek, George Mason U. [EC 1. Iron transport and storage compounds in living systems: Mossbauer spectroscopy	Dr. Deborah D. L. Chung, SUNY [NE] 1. Intercalation and exfoliation of graphite 2. Carbon composites 3. Structure of metal contacts to GaAs	

Dr. Susan R. McKay, Univ. of ME [NE]	Dr. Jane E. Zucker, AT&T [NE]	Dr. Deborah D. L. Chung, SUNY [NE]
1. The random field problem: Phase diagrams and thermodynamics	1. Spectroscopy of excitons and phonons in quantum wells	1. Structure of metal contacts to GaAs
Spin glasses and chaos Renormalization group methods and exactly- solvable models of phase transitions	2. Nonlinear optics below the band edge in quantum wells	Dr. Mildred Dresselhaus, MIT [NE] 1. Intercalation and superlattices
4. Phase diagrams and models of chalcogens adsorbed on nickel surfaces	ENVIRONMENTAL & ENERGY PHYSICS	Dr. Laura H. Greene, Bellcore [NE] 1. Heavy fermion 2. Cu6)/Nb multilayers: proximity effects
Dr. Laurie E. McNeil, Univ. of NC [EC] 1. Delight in disorder: Structural studies of chalcogenide glasses	Dr. Nancy J. Brown, Lawrence Berkeley Lab. [SW] 1. Combustion-generated air pollutants	3. Metallic superlattices Dr. Deborah Jackson, Hughes Research [SW]
1. Deep level defecs in III-V semiconductors	Prof. Janice Button-Shafer, Univ. of MA [NE] 1. Physicists' views of the strategic defense initiative	
 DX centers in III-V semiconductor alloys Influence of DX centers on heterojunction device characteristics 	Dr. Beverly S. Cohen, NYU Med. Ctr [NE] 1. Deposition of ultrafine particles on the human tra- cheobronchial tree: A determinant of the dose from radon daughters	
Dr. Cherry A. Murray, AT&T [NE] 1. Surface enhanced Raman scattering 2. Colloidal crystals	2. Sampling airborne particles for estimation of inhalation exposure	Dr. Kathleen Kash, Bellcore [NE]
3. Two-stage melting in two-dimensional colloidal crystals	Dr. Joanne K. Fink, Argonne [MW] 1. Characterization of fission products released from experiments that simulate hypothetical severe reac-	Optical properties of microstructures Prof. Jacqueline Krim, Northeastern Univ. [NE] Wetting and nonwetting of solid rare-gas films on
Prof. Gentrude F. Neumark, Columbia Univ. [NE] 1. Luminescence characterization of materials: ZnSe 2. Properties and role of alkalai metal impurities in	tor accidents 2. The final stage of a postulated reactor meltdown:	metal and graphite surfaces
ZnSe	Interaction of a molten core with concrete Dr. Luisa F. Hansen, Lawrence Livermore [SW]	Dr. Carmay Lim, Harvard [NE] 1. Dynamics of gas-surface interactions
1. Urdering transitions in semiconductors	Neutron and gamma-ray transport through materials of interest to fusion reactors	Dr. Patricia M. Mooney, IBM [NE] 1. Influence of DX centers on heterojunction device characteristics
1. Formation of the interface between a polar insu- lator and a non-polar semiconductor	B. K. Lunde, [MW] 1. Capital costs of building design	Dr. Cherry A. Murray, AT&T [NE] 1. Surface enhanced Raman scattering
Initial stages of semiconductor interface formation Dr. Mary Jo Ondrechen, Northeastern Univ. [NE]	Dr. Rosemary A. MacDonald, NBS [EC] 1. Heat capacity of coal	2. Two-stage melting in two dimensional colloidal crystals
Predicting the spectroscopic properties of discrete mixed-valence systems	FLUID AND PLASMA PHYSICS	Dr. Marjorie Olmstead, UCB [SW] 1. Formation of the interface between a polar insulator and a non-polar semiconductor
Dr. Carmen Ortiz, IBM [SW] 1. Physics of magnetic thin films	Dr. Mary L. Brake, Univ. of MI [MW] 1. Unusual light emission in relativistic electron beam pumped gases	2. Initial stages of semiconductor interface formation Dr. Carmen Ortiz, IBM [SW]
Dr. Elga Pakulis, IBM [NE] 1. Electronic phase transitions in a semiconductor heterojunction	Dr. Martha H. Redi, Princeton [NE] 1. Transport simulations of TFTR experiments	Physics of magnetic thin films Physics of thin films for optical storage
2. Optically-detected cyclotron resonance studies of semiconductors	2. Transport simulations of pellet injection on TFTR, ASDEX, and ALCATOR-C	Dr. Elga Pakulis, IBM [NE] 1. Electronic phase transitions in a semiconductor heterojunction
Dynamics of ordered overlayers on metals Surface reconstruction and surface phonon disper-	Dr. Helen L. Reed, Arizona St. Univ. [SW] 1. Stability and transition of laminar viscous flows	Dr. Talat S. Rahman, Kansas St. Univ. [MW] 1. Dynamics of ordered overlayers on metals
sion - a lattice dynamical study 3. Surface lattice dynamics and electron energy loss spectroscopy	GEOPHYSICS	Surface reconstruction and surface phonon dispersion - a lattice dynamical study Surface lattice dynamics and electron energy loss
Prof. Geraldine L. Richmond, Univ. of OR [NW] 1. Nonlinear optics as a probe of solid/liquid interfaces	Dr. Prabha Durgapal, Welex 1. An analytic model for electromagnetic wireline tools for geophysical exploration	spectroscopy 4. Dynamics of associative desorption of hydrogen from metal surfaces
D. I. D.C. 1707	Dr. Juliette W. Ioup, Univ. of New Orleans 1. Inversion of seismic data using Fourier coefficients [SE]	Prof. Geraldine L. Richmond, Univ. of OR [NW] 1. Nonlinear optics as a probe of solid/liquid interfaces
Prof. Mary Beth Steams, Ariz. St. Univ. [SW] 1. Origin of magnetism in 3D metals	2. The modified image method for airborne elec- tromagnetics	Prof. Mary Beth Steams, Ariz. St. Univ. [SW]
Structural and magnetic behavior of multilayered films	Dr. Sara A. Solla, AT&T [NE] 1. A scaling model for crack propagation and frac-	·
Dr. Judith A. Todd, USC [SW] 1. Microstructure-mechanical property relationships	lure	Dr. Gwo-Ching Wang, RPI 1. Two-dimensional phase transitions studied by low-energy electron diffraction
in advanced structural materials Dr. Gwo-Ching Wang, RPI (NE)	INTERFACE AND DEVICE PHYSICS Dr. Susan D. Allen, Univ. of Iowa [MW]	2. Kinetics of 2D ordering studied by high resolution low energy electron diffraction
1. Two-dimensional phase transitions studied by low-energy electron diffraction	Dr. Susan D. Allen, Univ. of Iowa [MW] 1. Laser deposition and etching 2. Laser induced desorption analysis of surface defects and contamination	semiconductor heteroepitaxy thin films by MBE
Dr. Alice E. White, AT&T 1. Mesotaxy: Single-crystal growth of buried silicide layers by ion implantation		Dr. Margaret H. Weiler, Raytheon [NE] 1. Semiconductor devices for high frequencies Dr. Alice E. White, AT&T [NE]
Mechanisms of formation of buried oxide layers by ion implantation	Dr. Meera Chandrasekhar, Univ. of MO [MW]	1. Mesotaxy: Single-crystal growth of buried silicide layers by ion implantation
Dr. Barbara A. Wilson, AT&T [NE] 1. Novel semiconductor heterostructures 2. Optical properties of heteroepitaxial III-V and II-	Dr. Shirley Chiang, IBM [SW]	2. Mechanisms of formation of buried oxide layers by ion implantation
VI materials 3. Recombination mechanisms in Type II heterostructures	Scanning tunnelling microscopy of metals on semiconductors Atomic force microscopy	

Novel semiconductor heterostructures Optical properties of heteroepitaxial III-V and II-VI materials	Dr. Marilyn E. Noz, NYU 1. Group theoretical examples in relativistic quality tum mechanics 2. Local area networks in an imaging environm	uan-	Dr. Denice Denton, Univ. of Wisconsin [MW] 1. The fundamental aspects of microfabrication of integrated circuits
3. Recombination mechanisms in Type II heterostructures	Dr. Sathyavathi Ramavataram, Brookhaven 1. Nuclear shell models		Dr. Renee D. Diehl, Univ. of Liverpool [FO] 1. Physics education in Britain
Dr. Jane E. Zucker, AT&T [NE] 1. Spectroscopy of excitons and phonons in quantum wells	2. Continuum theories of nuclear reactions 3. Polarization phenomena in nuclear reaction	5	Dr. Suzanne Gronemeyer, Siemens Med. Sys. [MW] 1. Clinical magnetic resonance imaging
2. Nonlinear optics below the band edge in quantum wells	4. Model calculations at intermediate and high gies	ener-	Dr. Martha P. Haynes, Cornell Univ. [NF]
MOLECULAR AND POLYMER PHYSICS	Dr. Elizabeth A. Rauscher, Tecnic Research 1. S-matrix of decay in light and heavy elemen. 2. Cosmology models, strings, and particle phy	[SW] Is Isics	Extragalactic sociology: Environmental effects on galaxy formation Large-scale structure in the universe
Dr. Flonnie Dowell, Los Alamos [SW] 1. Molecular modeling of complex materials 2. Molecular theories for polymers	• • • • •	IMWI	Dr. Caroline L. Herzenberg, Argonne [MW] 1. Women scientists and engineers of antiquity and the Middle Ages
 New phase and molecule predictions for partially-ordered chains 	Dr. Julia A. Thompson, U. of Pittsburgh 1. Direct photon production at the CERN ISR		Dr. Sonja Krause, RPI 1. Introduction to polymers [NE]
Dr. Sandra C. Greer, Univ. of MD [EC] 1. Equilibrium polymerization as a phase transition	Anomalous electron production at low trans- momentum Relativistic heavy ions and close-packed qua	rko	Dr. Arlene J. Lennox, [MW] I. Neutrons against cancer: The clinical experience
Dr. Sonja Krause, RPI 1. Elastic small-angle neutron scattering of multi-	 Direct \(\gamma \): Shedding light on quarks and glureview of present knowledge 	ions-a	at Fermilab 2. A woman's career in physics
block copolymers and crosslink labeled gels 2. Equilibrium thermodynamics of homogeneous and microphase separated block copolymers	Dr. Recta Vyas, Univ. of Arkansas 1. Two-body effects in photodisintegration of determ and triton 2. A trip to nuclear world. (for undergraduate s	eu-	B. K. Lunde, [MW] 1. Use of fiber optics by the telephone company 2. Development and marketing of a technical product
Prof. Geraldine L. Richmond, Univ. of OR [NW] 1. The spectroscopy of metal ions bound to proteins and polymers	dents.) 3. Delay time distribution of quantum fields		Dr. Elizabeth A. Rauscher, Tecnic Research [SW]
	Dr. Sallie A. Watkins, 1. The beta ray work of Lise Meitner	[MW]	1. Nature and the art of photography 2. Ambient superconductors: Are they for real?
NUCLEAR AND PARTICLE PHYSICS Prof. Karen Barad, Barnard College [NE]	TALKS FOR GENERAL AUDIENCI	re	Dr. Petra Schmalbrock, Ohio State [MW] 1. The basics of magnetic resonance imaging and
Numerical simulations of quantum chromodynamics	Dr. Sheila Bailey, NASA		Dr. Lynn F. Schneemeyer, AT&T [NE]
Dr. Eva Bozoki, Brookhaven [NE] 1. Synchrotron radiation and its use	1. Solar power in space Prof. Karen Barad, Barnard College		1. High temperature superconductors
Prof. Janice Button-Shafer, Univ. of MA [NE] 1. Utilization of polarized targets and polarized	1. Quarks and supercomputers	[NE]	Dr. Judith A. Todd, USC 1. The earliest metals smelting in Europe 2. Studies of the African Iron Age
beams in nuclear and particle physics	Dr. Eva Bozoki, Brookhaven 1. Synchrotron radiation and its use	[NE]	Dr. Virginia Trimble, USC [SW]
Dr. Ling-Lie Chau, Brookhaven [NE] 1. Frontiers of particle physics	Dr. Mary L. Brake, Univ. of MI 1. Plasmas that glow in the dark	[MW]	1. Cosmology: Man's place in the universe 2. Your lucky stars: An introduction to stellar evolution
Onset of deformation in heavy nuclei	Dr. Bonnie J. Buratti, Caltech/IPL 1. The exploration of Mars 2. Voyager encounters Jupiter and Saturn 3. Rendezvous with a comet	[SW]	Dr. Reeta Vyas, Univ. of Arkansas [SE] 1. A trip to nuclear world. (For undergraduate students.)
Dr. Bunny C. Clark, Ohio State Univ. [MW] 1. Relativistic effects in nuclear physics	Prof. Janice Button-Shafer, Univ. of MA	[NE]	Dr. Sallie A. Watkins, 1. A woman's place in early twentieth century phy-
Dr. Luisa F. Hansen, Lawrence Livermore [SW] 1 Microscopic optical model potentials in the	1. The Strategic Defense Initiative - physicists' Dr. Bel Campbell, Univ. of NM		sics 2. Two discoveries, two responses 3. The making of a physicist: Lise Meitner
analysis of nucleon-nucleus scattering 2. The transport of 14-MeV neutrons through materials of interest to fusion reactors	1. Star formation: The sound and the fury 2. Does astronomy matter?		Dr. Audrey V. Wegst, [MW]
Dr. Gail G. Hanson, SLAC 1. Physics of the neutral weak vector boson ZO	Dr. Shirley Chiang, IBM 1. The scanning tunnelling microscope: A micro scope that sees atoms		Experiences in the developing countries using nuclear medicine: 2 years with the IAEA Dr. Alice E. White, AT&T [NE]
Dr. Lorella M. Jones, Univ. of IL [MW] 1 Quark and gluon jets - traces of color in a color-	Dr. Deborah D. L. Chung, SUNY	[NE]	1. Materials modification using ion beams
less world	1. Aerospace materials 2. Carbon 3. Ceramics		Dr. Barbara A. Wilson, AT&T [NE] 1. Women in physics: An international perspective
Dr. Deborsh A. Konkowski, [SW] 1. The nature of singularities in general relativity 2. Equivalent Lagrangians in physics	Dr. Beverly S. Cohen, NYU Med. Ctr 1. The radon problem: An overview	[NE]	
Prof. June L. Matthews, MIT [NE] 1. Probing the nucleus with high-energy photons 2. How many nucleons does it take to scatter a pion?	Dr. Lynn R. Cominsky, Sonoma State Univ. 1. X-ray visions from the edges of the universe- black holes and quasars	[SW]	

The PHYSICS COLLOQUIUM SPEAKERS LIST is compiled annually by the American Physical Society Committee on the Status of Women in Physics. Comments or questions on the 1988/89 CSL should be addressed to Ken Lyons, AT&T Bell Laboratories, 1A126, 600 Mountain Ave., Murray Hill, NJ 07974.

To modify an existing entry, or to make a new one, please complete a copy of the form on the back of this page and return to Ken Lyons at the address given there.

COLLOQUIUM SPEAKERS LIST ENROLLMENT/MODIFICATION FORM

The PHYSICS COLLOQUIUM SPEAKERS LIST is compiled annually by the American Physical Society Committee on the Status of Women in Physics. Comments or questions, as well as modifications or new entries for the 1988/89 CSL should be addressed to

Ken Lyons, 1A126 AT&T Bell Laboratories 600 Mountain Ave. Murray Hill, NJ 07974

To modify an existing entry, or to make a new one, please fill out a copy of the form below and return it to the address above. PLEASE PRINT CLEARLY OR TYPE!				
Check whether this is a modification of an existing entry () or a ne	w entry ().			
Name:	Phone:_			
Short name of institution (for use in second section of CSL):	-			
Address: (please use no more than three lines of about 38 char maximum	m per line)			
		zipcode		
CSWP Roster registration number, if known:				
To register a new title, give the title as you want it to appear (first we below. Then check the section(s) where it is to be inserted. Also check title. If more than 4 talks are registered, please use an additional copy of title.	ord and proper the top box if the form, stap Astrophysics Cond. Matter	nouns capitalized his is a CORREC ling them togethe CORRECTION Bio/Medical Env/Energy	l) in the left column TION of an existing er. Chem/Statistical	
	☐ Geophysics☐ Nuclear/Particle	☐ Interface/Device☐ Talks for General		
Title 2.	☐ Astrophysics☐ Cond. Matter☐ Geophysics☐ Nuclear/Particle			
Tide 3.	☐ Astrophysics ☐ Cond. Matter ☐ Geophysics ☐ Nuclear/Particle	□ CORRECTION □ Bio/Medical □ Env/Energy □ Interface/Device □ Talks for General		
Title 4.	☐ Astrophysics ☐ Cond. Matter ☐ Geophysics ☐ Nuclear/Particle	□ CORRECTION □ Bio/Medical □ Env/Energy □ Interface/Device □ Talks for General		

to sacrifice my health, grades, or the quality of my family life. The loss of the scholarship is going to cause great financial stress. If your organization can point me in any direction for resources I would be very thankful."

Fortunately, in a subsequent letter, we learned that her financial aid office changed the title of her scholarship, and it is secure through next year. She writes:

"I thoroughly enjoyed the reading material you sent me along with the contact names and addresses. It is very gratifying to know there is such an active support group. There are many days when I think I am pursuing a lost cause. I am concerned at times about my age and how far I have to go. I wonder often if and when I finally do achieve the degree I long for, will there be a place for me in the physics community? Perhaps there is information your group can give me that will allow me hope. It is a huge undertaking but I feel compelled to go on. To stop is not an alternative.

"I wonder though, how many others are in the situation I was in and are unable to find a solution?"

Her question is sobering, and her situation is disturbing to anyone concerned with the status of women in physics. The *Gazette* welcomes comments and suggestions, from those who are or have been in similar situations.

APS COUNCIL ADOPTS STATEMENT ON DEMEANING GRAPHIC MATERIAL IN THE WORKPLACE

In response to an initiative from the CSWP, the APS Council adopted the following statement on the display of

demeaning graphic material in the workplace. While the statement has no regulatory force, it offers support to individuals who wish to take a stand on the display of sexually offensive material in the work environment.

"The Council of the American Physical Society has long been concerned with the serious underrepresentation of women and minorities in the profession of physics and, over the years, has established a number of programs that attempt to counter this trend. The Council now urges each member of the Society to help in this effort by being sensitive to all matters that affect the atmosphere of the physics workplace.

"In particular, actions that create a hostile, intimidating, or offensive work environment for any group undermine the affirmation action efforts of the Society and should be eliminated. These actions include the public posting of materials that are insulting, derogatory, or exclusionary to a particular group.

"We call upon all members of the Society to help ensure that persons of every race, gender, and ethnic origin may feel a welcome part of the physics community."

1988 LAURA EISENSTEIN AWARD

The Laura Eisenstein Award was established in 1986 by the Department of Physics of the University of Illinois at Urbana-Champaign, in cooperation with the CSWP, to encourage women to undertake studies leading toward a degree in physics. The award recognizes a University of Illinois woman who has achieved academic excellence in undergraduate studies or who has distinguished herself in teaching or research while pursuing a graduate degree.

This year's recipient is Julie A. Borchers, a graduate student who has distinguished herself in her thesis research as well as in her course work. According to her advisor, Professor M. B. Salamon, she has eight papers to her credit and has done a superb job at the National Bureau of Standards where she has conducted neutron scattering experiments on superlattices.

CSWP joins the University of Illinois in congratulating Ms. Borchers, and recognizes her potential of becoming an outstanding physicist.

GRADUATE OPPORTUNITIES FOR WOMEN

Dear Colleague:

The University of California, Santa Barbara, is actively recruiting and offering financial support for women seeking graduate degrees in the fields of mathematics, the physical sciences, and engineering. The Graduate Division at UCSB is firmly committed to increasing the quality and quantity of female graduate students in these disciplines and has various fellowships and financial assistance available for qualified women.

If you are seeking information on strong graduate programs in these areas, we will be pleased to offer any assistance necessary. We can facilitate the application process and act as referrals for individual departments. Questions may be directed to Karen Nelson, Director of Graduate Admission, (805) 961-4342, or Dorothy Nagaran, Affirmative Action Coordinator, (805) 961-3803. Write to Graduate Division, Cheadle Hall, University of California, Santa Barbara, CA 93106.

Richard Duran Associate Dean UCSB, Graduate Division

CHANGING YOUR ADDRESS?				
PLEASE PRINT				
LAST NAME				
FIRST NAME	MIDDLE NAME			
ADDRESS -				
ADDRESS				
ADDRESS				
CITY, STATE, PROVINCE, & COU	NTRY			
ZIP CODE				
AREA CODE/TELEPHONE NO.				
☐ CHECK HERE IF YOU WIS NAIRE*	H TO RECEIVE THE CSWP ROSTER QUESTION-			
	ed in the APS Membership Directory			
Mail to:				
CSWP AMERICAN PHYSICAL SOCIETY 335 EAST 45th STREET NEW YORK, NY 10017 U.S.A.	ATTACH GAZETTE MAILING LABEL HERE			

CURRENT ADDRESSES SOUGHT

The Post Office has been unable to deliver the CSWP Gazette for the following people, and CSWP is anxious to get new addresses. Do you see your name or a friend's name here? Please fill out a change of address form.

NAME

SALLIE W. ABBAS
BEATA J. ABBS
DOROTHY A. ADAMS
JEAN C. ADAMS
MARY E. ADAMSON
SANDRA J. ADCOCK
CONCEPCION S. ALBANO
ROSE ANNE ALBRIZIO
SHAMSIA Z. ALI
ANANCA M.S. AMATYA
ELIZABETH DUX ANDERSON
MARY FRANCES ANTON
CHAUDHURI APARNA
JULIA T. APTER
ELIZABETH M. ARASE
ENGIN ARIK
PHYLLIS JEAN ARNOLD
NUKHET ARRAN
MARY ATTERMEYER
LINDA EVE E. AULT
PATRICIA M. AUTRY
H. AUYANG
N. KATHERINE BADGER
LYNN HUBBARD BAHAM
ANNA MAE WALSH BAKKE
JANE W. BALL
KATYA BALOG
PATRICIA BANOGON
ROSEMARY J. BARRETT
SUSANA BARROS

VIOLA PRICE BARTON
BETTY A. BAUER
KAREN STRICKER-BAUER
CHARLOTTE BAUERLE
THERESA BAUS
LYNNE A. BAYLOR
DIANA I. BELL
SUSAN M. BENFORD
CAROL D. BENNETT
RACHELLE BERGMANN
SR. MARY BERNARDA
CORRE WILLIAMS BERRY
ABIGAIL E. BEUTLER
MARY BEZJAK
LAURA A.H. BILLARD
SUSAN K. BILLINGSLEY
SANDRA J. BLACK
KATHERINE BLACKLOCK
KATHERINE BLACKLOCK
KATHERINE BLACKLOCK
KATHERINE BLAUGETT
DALE P. BOERCKER
HARRIET BOUGEN
CAROL BOWEN
ANN MARIE BRADLEY
BARBARA B. BRAUER
MARY J. BREEDLOVE
MARCIA BRINK
ANN BROMBERG
EVA T. BROWDER
PATRICIA S. BUCHANAN

EDITH G. BUERGER
JUSTINE BURLESON
SUSAN M. BURNETT
BARBARA A. BURNS
JEAN BURNS
VELMA I. BURNS
VELMA I. BURNS
C. ANN BURTON
ELEANOR ANN F. BUSBY
ANN SANDERS BUXTON
AUDREY B. BUYRN
LOUISE F. BYRNS
ANNE C. BALANT-CAMPBELL
LORNA E. CAMPBELL
PATRICIA ANN CANTY
DEBORAH CARPENTER
BRIDGET O. CARRAGHER
VIRGINIA L. CASTRO
MAVIS GAIL CAUFFMAN
CATHY CAVENDISH
HILDA A. CERDEIRA
CATHERINE J. CESARSKY
RUTH W. CHABAY
JAYA CHANDRA
MEERA CHANDRAPAL
HAN-CHUAN CHANG
JANE CHIEN-ERH CHANG
KATHERINE CHANG
YU JULIA CHAO

NORMA M. CHASE NORMA M. CHASE
Y.C. CHEN
MARGARET CHENEY
PAULA CHESHIRE
SHU-CHIOUNG CHI
NIKIDORA CHIOTELIS
BELLA CHAO CHIU
ERMINE A. CHRISTIAN
PEGGY V. CHURCH
ESTHER W. CLAFFY
ELIZABETH V. CLARK
LYNDA CLARK
PATRICIA A. CLARK
IMOGENE CLAYTON
ELEANOR M. CLINTON
AUDREY O. COHEN
PRISCILLA J. COLWELL
CAROLE ANN CONRAD
CONNIE M. COOPER
SUSAN COOPER
SUSAN COOPER
LYNN A. COPEL
DOROTHY L. COURTNEY
NAHIDE G. CRAIG
MELISSA CRAY
KATHLEEN CRENNELL
BARBARA K. CROWLEY
DOROTHY E. CROWLEY
IRENE CRUZ-GONZALEZ
DELIA CUERUO
MARY E. CUNNINGHAM
STEPHANIE CZAPANSKIY
KOKILA DAVE
MARIA DAVIDOVICH
NAN WOOD DAVIES
ROBERTA U. DAY
SHIRLEY M. DENISON
JANE M. DEWEY
NANIELOU H. DIETER
DARYL ANN DOANE
FRANCES DOBROWOLSKI
ANNE RITGER DOUGLASS
GERI ANDREA DOWD
CLARE DRISCOLL
LUCILLE A. DU SAULT
ALISON DUNSMORE
H.M. DYNN
DIANNE L. EARING
JANET W. EARLES
KATHLEEN DEGIOIA-EASTWOOD
SONJA MARIA EICHER
ARUN EKACHAI
CAROL ELFANT
MARY ANN ELZERMAN
KAREN E. EMILEY
SANDRA ENGELKE
PIRKKO ESKOLA
MARY ESTERGOMY
MARGERET C. ETHIER
CLARE K. EVE
PRISCILLA EVERETT
IOAN ELIZING PRISCILLA EVERETT
JOAN EWING
GIZING H. FAHMI
S.R. FANG
KATHLEEN A. FARRELL
DEBORAH FAUSCH
MARY HULSING FEHRS
CASSANDRA G. FESEN
EMMA FESSENDSEN
NANCY MACARTNEY-FILGATE
LINDA FINCHAM
LUCILLE FINK
CAMILLE FLECK FIORE
SUSAN A. FLEMING
GAIL DONOVAN FORRY
SHARON L. FORTNER
FAIL H. FOSTER
MARIE FRANZ
ELZIE FREEMAN MARIE FRANCIA
JEAN FRANZ
ELZIE FREEMAN
ESTELLE ALICE FRIDAY
JUDITH FROHBOESE
DALIA GARCIA
M. GARCIA
M. GARCIA
BARBARA MILLER GARDNER
KATHLEEN GARDNER
SR. BARBARA C. GASS
MIRJANA R. GEARHART
CAROLINE GEE
MANYEE GEE
DIANE GELLER
KAE PEARSON GERSHON
ERNESTINE H. GIESECKE
JOCELYN RUTH GILL
ROSALIE GILLES
ANNE GLASSMAN
MIH-SEH GOOD
CHARLOTTE GORDON
BARBARA M. GRALLA
ROSALIE C. GRANT
ALMA GRAY

CAROL L GREEN
NANCY ELLEN GREENE
RUTH NINA GREENWALD
ERIKA M. GROETZINGER
CHAMPA GUHA
PATRICIA A. GUIDA
LAURA S. GUILLORY
JANE C. GULICK
LARA A. GUNDEL
MADHU GUPTA
LAILA R. GUTIERREZ
KATHLEEN WELAND HAAS
SUSAN HACKWOOD
ELIZABETH S. HAFEN
ANN SUTPHIN HAFER
EVELYNN MAXINE HAMMONDS
ROBERTA J. HANNA
ELIZABETH G. HANTEL
DAPHNE KEAN HARE
CATHERINE HARRINGTON
ELEANOR S. HARRIS
ROBERTA HARTMAN
NANCY MULLANEY HARVEY
MARION HAURWITZ
BARBARA A. HEATH
DIANE HEATH NANCY MULLANEY HARVEY
MARION HAURWITZ
BARBARA A. HEATH
DIANE HEATH
ERNA M.J. HERREY
BEATRICE A. HICKS
SARAH J. HILL
JOAN HIRSHBERG
ELITA S. HO
LILLIAN HODDESON
MARY ELIZABETH HOGAN
CAROLYN C. HOLMAN
NAW HOLZWARTH
RUTH HOOD WIESER
LINDA A. HOOPER
LINDA A. HOOPER
NANCY C. HOTCHKISS
TERRI HOUSTON
CHI-HUA WU HSIUNG
LILLIAN WANG HSU
HELEN HU
FON-SHAN JUDY HUANG
ROBERTA L. HUFFMASTER
SUSANNE HUMMER
JUDITH P. HUMNICKY
LYNN B. HUMPHREYS
SR. JOHN HUNGERMAN
THELMA L. IANO
P.A. INDIRA
DAPHNE J. INNES PA. INDIRA
DAPHNE J. INNES
MARTHA C. IRBY
DAWN FRIEDELL JACOBS
LILLIAN E. JACOBSON
CHRISTINA HUK JANSEN
PATRICIA GILL JARVIS
SARAH JENKINS
ANNA A. JOHNSON
CHRISTINA JOHNSON
CHRISTINA JOHNSON
CHRISTINA JORDAN
SR. M. ALMA JOSEPH
YVETTE JUGNET
LYNNA B. KANNEY
SHUKLA KAPUR
JUDITH HARTE KARAN
LYNETTE KASPIN
JA. KEEFER
CAROL J. KELLY
MARGO L. KELLY
LYNNE W. KENNEDY
ANNA KENWAY
NAJAT KHELIL
GLEN KING
JACQUELINE S. KINMAN
SOONOK KIOLBASSA
CAROL KIEIN
CAROLE R. KLEINMAN
HELEN B. KNAFLICH
JOAN R. KOCH
MARIA KOELLING
JUDITH KOESTLER
SUE J. KOHLHEPP
FRANCES ANNE KONANTZ
ALICE E. KONIGES
DEBORAH KONKOWSKI
ANN A. KOSS
CHRISTINE KOURKOUMELIS
NANCY ANN KOVACS
MARY KRAMER
SHIH YUAN YU KUAN
YUEN YUEN KWAN
G. LAKSHMI
MUNUKUTLA LAKSHMI
CPT. J. WILLITS LANE
PUSHPAMALA LAURIN
MARILYN LAWSON
CORINNE MARGARET LEE
JEAN-LIONG LEE
SABRINA LIN LEE
HOPE I. LEIGHTON

ALICE E. LEIST
GERTRUD A L EISTERER
CATHY MERYL LERNER
SARAH HAYNES LERUDE
SARAH LEVINSON
VICTORIA M. LEVIS
RENEE LEVY
CHOR. KWAN LI
MIN-CHE CHEN LI
TA-YUNG LI
REBECCA LIANG
JUDY LIEBERMAN
DEBORAH LIEBMAN
DEBORAH LIEBMAN
DEBORAH LIEBMAN
LING-CHIA YEH LIN
CHIU LIAN J. LIU
TSH-HUEI LIU-GER
HSU-SHIH YI LO
DOROTHY LOCANTHI
ANNE CHUHRAN LONG
LYNDA J. LONG
SHIUI YING LU
MARJORIE ANNE LUNDQUIST
LINDA S. MA SUNG
NANCY E. MACDERMOTT
DELPHINE MACDONALD
N.E. MACMEEKIN
ALICE STOLL MACNOW
BARBARA K. MADARAS
CAROL L. MAINVILLE
SHEILA M. MALM
MARINA BUJATTI MARCELJA
ALICE LIN MARCUS
VERA J. MARES
MARILYN MARIANS
MARY ANNER MARK
AVIS V. MARKSTROM
CAROL LEE MARRERO
BEATRICE MARRERO
BEATRICE MARRERO
BEATRICE MARRERO
JILL P. MASON
VIRGINIA HAMILTON MASSEY
JOAN MAY
VICTORIA MAY
VIC

NAME

CARLA GROSSO PILCHER
JUSTINE E. POHL
HELEN POLAND
HELEN F. POOL
NANCY ANN POSCH
CATHERINE E. PROCIK
D.P. PULASKI
JILL J. PUNSKY
ALICE M. QUINLAN
MARY AGNES RACKI
MIRJANA MIRA RADIVICH
DEBBY RAMSEY
JENNY CHEN RANVAUD
EDITH REED
JANICE M. REEDER
KAYE REEDER
KAYE REEDER
ROBERTA AUSTRING RHODES
GRACE FRANCINE RICE
D. WINSLOW RICHARDSON
MARTHA J. RIDGWAY
FREDA WASSERSTEIN ROBBINS
ROSALIE ROBINETTE
MARGARET ROBSON
DETIA M. ROE
PATRICIA A. ROMAN
LYN ROMANS
ELIZABETH RONAT
MARY AUSTIN ROSE
NANCY RICHARDS ROSSI
LYNETTE B. ROTH
MICHELINE C. ROUFOSSE
MAYRON W. RUCHELMAN
BARBARA JEAN RUSSELL
SISTER KARA RYAN
AMY SADEGHI
ELLEN I. SAEGEBARTH
SAPHURA SAFARIE
GLORIA WELT SAGE
LYDIA SUSAN SALMON
MANISHA SARKAR
DEB SAWYER
EVELYN L. SCHNEIDER
MARTHA SCHWARTZMANN
NAOMI H. SEIFERT
JANET M. SEINER
ARATI A. SHAH
MARY LEA SHANE

ANN P. SHEN
CHRISTINE A. SHERMAN
SHAO-NAN SHON
AMY SHU
CHEN SHUWAN
EVELYN SIMON
JANET P. SIMPSON
F. KAYE SINGLETON
BARBARA A. SINHA
VALERIE LYNN SKINNER
JANET RAE SMITH
JANET W. SMITH
MARY JO SMITH
M-L SMOES
CAROLE SOLE
RITA J. SOUTHALL
MARY ANN SPAETH
ARUNA SREENIVASAN
SNEH KEERTI SRIVASTAVA
MADELINE V. STALLER
JOYCE L. STANTON
PATRICIA M. STARZYK
SARAH J. STEPHENS
SUE N. STIDHAM
MARTHA STILLMAN
MARTHA STILLMAN
MARGARET A. STOTO
PATRICIA ANNE STROUD
MARIANNE SZABO
JOAN CAROL TAIT
MYRA GLEE TANT
SHEILA B. TAYLOR
THELMA TELLER
HSUAN TIEN
MARY LOIS TIFFANY
ANN BAUGH TIPTON
JANETT ROSENBERG TRUBATCH
JOSANNE WATKINS TRUSTY
WEICHEN TU
ALEKSANDRA TURKOVIC
NANCY JANE TYRER
EVANGELIA TZANAKOU
SANTHA K. UNNI
FLOIE VANE
EMMA V. VERDIECK
MARY JEANNE VERDIECK
JOANA VIZGIRDA
CORNELIA VON CHARZEWSKI
JOKE VOORHOEVE

PARUL VORA
JOAN A. VORPAHL
BESSIE LOH WAI
CHARLOTTE WING WALES
PING KWAN WAN
ROSA B.C. WEBSTER
KATHERINE E. WEIMAR
KAREN WEIS
JACQUELYN A. WEISS
PHYLLIS WEISS
EMILY W. WELLBANKS
SHELLEY ANN WESTLUND
JOAN ROLAND WHITE
MARGARET JENKEL WHITE
MARY ANNE WHITE
JANET WHITMAN
LORRAINE WHITMAN
CYNTHIA K. WHITNEY
MARTHA ANN WHITWORTH
EILEN WILD
DIANE R. WILLIAMS
MARJORIE WILLIAMS
MARJORIE WILLIAMS
ANNETT N. WILLIAMSON
MAXINE C. WILLIS
LOUISE A. WILSON
SHARON L. WINFREY
MARY M. WINN
SANDRA S. WITT
SARALUE WOOD
MARTHA V. WOODRUFF
FRANCINE E. WRIGHT
MIEKO T. YAMAWAKI
JANE HSU YANG
KOU-YING YANG
JOYCE TEVEBAUGH YARNELL
NING-CHIA YEH
ROSEMARIE YEVICH
BEVERLY C. YU
CECILLIA M. YU
YUEH JAW YU
CINDY YUEN
MARY C. ZAMBON
MARINA ZAPPALA
GAY E. ZAUMEYER
VALERIE GAMBLE ZECCA
HELGA M. ZIMMERMAN

The American Physical Society 335 East 45th Street New York, New York 10017

Non-Profit Org.
U.S. POSTAGE
PAID
Hicksville, N.Y.
Permit No. 294