The BES Report

Superconductivity:

Challenges and Opportunities

John Sarrao, LANL Wai-Kwong Kwok, Argonne

<u>Outline</u>

Energy Challenge - BRN Workshops

Grid Challenges

Superconductivity Solutions

Transformational Needs

BES-EDER Opportunities

APS March Meeting March 6, 2007

Basic Energy Sciences

Workshop on Superconductivity May 8-11, 2006

The Energy Challenge

BES Basic Research Needs Workshops

"Considering the urgency of the energy problem, the magnitude of the needed scientific breakthroughs, and the historic rate of scientific discovery, current efforts will likely be too little, too late. Accordingly, BESAC believes that a new national energy research program is essential and must be initiated with the intensity and commitment of the Manhattan Project, and sustained until this problem is solved."

BESAC Report, February 2003

2005

Basic Energy Sciences

BES Basic Research Needs Workshops 2006

Basic Energy Sciences

The Grid - the Triumph of 20th Century Engineering

Basic Energy Sciences

The 21st Century: A Different Set of Challenges

capacity

growing electricity uses growing cities and suburbs high people / power density urban power bottleneck

2030 50% demand growth (US) 100% demand growth (world)

reliability power quality

LaCommare & Eto, Energy 31, 1845 (2006)

efficiency lost energy

62% energy lost in production / delivery

8-10% lost in grid

40 GW lost (US) ~ 40 power plants

2030: 60 GW lost 340 Mtons CO2

Basic Energy Sciences

BES Workshop on Superconductivity, May 8-11, 2006

Workshop Charge

"identify basic research needs and opportunities in superconductivity with a focus on new, emerging and scientifically challenging areas that have the potential to have significant impact in science and energy relevant technologies"

Workshop Co-chair: John Sarrao, LANL Co-chair: Wai-Kwong Kwok, ANL

Panel Chairs

Materials:I. Bozovic (BNL)Phenomena:J.C. Davis (Cornell)L. Civale (LANL)Theory:I. Mazin (NRL)Applications:D. Christen (ORNL)

Plenary Speakers Paul Chu, Alex Malozemoff, George Crabtree, Mike Norman, Z.X. Shen

Pat Dehmer, DOE-Basic Energy Sciences Jim Daley, DOE-Electricity Delivery and Energy Reliability

Participants

- ~ 100 researchers, representing
 - 7 countries, 9 national labs,

28 universities, spanning basic and applied research

Basic Energy Sciences

BES Workshop Report

Electricity is our most effective energy carrier

• Clean, versatile, switchable power anywhere

Power grid cannot meet 21^{st} century challenges

• Capacity, reliability, quality, efficiency

Superconducting technology is poised to meet the challenge

Present generation materials enable grid connected cables and demonstrate control technology

Basic and applied research needed to lower cost and raise performance

High risk-high payoff discovery research for nextgeneration superconducting materials

- Higher temperature and current capability
- Understand fundamental phenomena of transition temperature and current flow

http://www.sc.doe.gov/bes/reports/abstracts.html#SC

Research Challenges and Opportunities

Superconducting Cable

Superconducting Power Control

Smart, self-healing control systems

Control Vortex Matter

Next Generation Materials

Basic Energy Sciences

The Key: Superconducting Materials

	1G 'multi-filament wire'	2G 'coated conductor'	"3G" 'enhanced pinning'	Transformational New Materials
Self-field	3x copper	5x copper	5x copper	10x copper
H = 0.1-1 T transformers	0.2x copper @77K	1x copper @77K	2x copper	5x copper
H = 1-5T rotating machines	0.01x copper @77K	0.1x copper @77K 1x copper @ 65K	1 x copper	5x copper
Anisotropy	> 100	7	1	low
Key Issues	high materials cost: Ag	high process cost: multi-layer architecture	isotropic structure, pinning, and critical current	low materials/ process cost: simple architecture
Operating Temperature	self-field: 77 K in field: 30 K	self-field: 77 K in-field: 50 K	100K 77 K	200 K - room 200 K

next generation superconductors needed to transform the grid

Control Vortex Matter: a multi-scale challenge

Basic Energy Sciences

Superconductors by Design

Discovery by serendipity: Hg (1911), copper oxides (1986), MgB₂ (2001), NaCoO₂: H₂O (2003)

Discovery by empirical guidelines: competing phases, layered structures, light elements, . . . B-doped diamond (2004), CaC_6 (2005)

Crystal Structure Composition

Electronic Structure Density functional theory

Pairing Mechanism phonons (classical BCS) spin fluctuations valence fluctuations

Computationally designed superconductors

- Electronic structure calculation by density functional theory
- Large scale phonon calculations in nonlinear, anharmonic limit
- Formulate "very strong" electron-phonon coupling (beyond Eliashberg)
- $\boldsymbol{\cdot}$ Determine quantitative pairing mechanisms for high temperature SC

Composition Superconductivity

J. Mater. Chem, 2006 Computed metal hydride superconductor

Challenge: Create a paradigm shift to superconductors by design

Basic Energy Sciences

Find the Superconductivity Mechanisms

Higher T_c / New Mechanisms

High temperature "fluctuating superconductivity" in the pseudo-gap region and 'normal state' vortices? p-, d-wave Cooper pairing Two band superconductivity

multiple pairing mechanisms

Relate find chedsimiplitying raighgering concepts phases

"Map the genome" of high T_c : find the controlling factors

ARPES

Basic Energy Sciences

Achieve a paradigm shift from materials by serendipity to materials by design

Predict and control the electromagnetic behavior of superconductors from their microscopic vortex and pinning behavior

Discover the mechanisms of high-temperature superconductivity

Transform the power grid to deliver abundant, reliable, high-quality power for the 21st century

- first steps within reach
- full transformation requires breakthrough basic research

Superconductivity Research Continuum

Discovery Research	Use-inspired Basic Research	Applied Research	Technology Maturation & Deployment
 Room-temperature superconductor (Grand 	• 100K isotropic SC (Grand	Technology Milestones:	
Challenge)	Challenge)Achieve theoretical limits of	> 2G coated conductor carrying 300 A x 100 m	Cost reduction
 Superconductors by design (Grand Challenge) 	critical current <i>(Grand</i> Challenge)	(2006)	Scale-up research
 Atomic scale control of materials structure and properties 	 3-d quantitative determination of defects 	50 K operating temperature	 Prototyping
 Tuning competing interactions 	and interfaces	electric power equipment with ½ the	 Manufacturing R&D
for new phenomena	inhomogeneity	energy losses and ½ the	 Deployment support
 Unravel interaction functions generating high temperature superconductivity 	 "Pinscape engineering" and modeling of effective pinning centers 	 wire with 100x power capacity of same size 	
 Predictive understanding of strongly correlated 	 Next Generation SC wires 	copper wires at \$10/kiloamp-meter.	
superconductivity		 Assembly and utilization R&D issues 	
 Microscopic theory of vortex matter dynamics 		 Materials compatibility & 	
 Nano-meso-scale superconductivity 		joining issues	
Office of Science		Technology Offices	
	BES	EDER	

Basic Energy Sciences

Electricity is our most effective energy carrier - clean, versatile, pervasive The grid cannot meet 21st challenges: *capacity, reliability, quality, efficiency* Superconductivity has solutions:

Cable: five-fold or more increase in capacity

Power control: Smart, self-healing control of faults and reactive power

Safe, small, efficient transformers for urban power bottleneck

Research challenges:

10-fold increase in critical current, 10-100 fold reduction in cost Understand dynamics of vortex matter, mechanism of superconductivity Discover new materials: higher transition temperatures, lower anisotropy Paradigm shift: superconductors by serendipity ⇒ superconductors by design Superconductivity is "Pasteur's science" - fundamental breakthroughs drive applications

Read the workshop report; feedback welcome

Help spread the message, especially the sense of urgency

Articulate grand challenges to the left of the four-column chart

