
Basic Research Needs for Superconductivity

Understanding Mechanisms of Superconductivity and Design of Advanced Superconductors

Warren E. Pickett (UCDavis)

Based in part on 2006 DOE/BES Report





Outline:

- history, mechanisms of HTS
- perspective: requirements of a theory of HTS
- outstanding challenges in mechanisms (non-HTS) stimulated by new materials discoveries
- design of new, advanced superconductors



### In the beginning..... Phys. Rev. 108, 1175-1204 (1957)

PONSCOAL REVIEW ---

монсык тыл, мемлек и

DECEMBER 1, 1937



Theory of Superconductivity\*

J. BALDECH, L. N. COUTER, JANU J. R. SCHREFFERT Department of Physics, University of District, University (Received July 3, 1937)

John Bardeen Leon Cooper J. Robert Schrieffer




## 50th anniversary of the BCS paper

1360 citations as of 2003 5th most of any in PR/PRX/PRL/RMP

#### Citation Statistics from 110 Years of *Physical Review*

S. Redner, Physics Today, 2005





**Basic Energy Sciences** 

### the superconductor tsumani (late 1986)

Z. Phys. B. - Condensed Matter 64, 189–193 (1986)





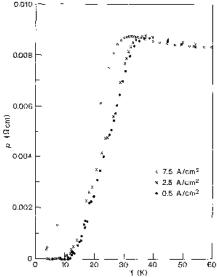



Fig. 3. 1-ow-temperature resistivity of a sample with x(Bu) = 0.75, recorded for different current densities

#### Possible High $T_c$ Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Received April 17, 1986

## 20th Anniversary

## Nobel Prize in Physics, 1987



**Basic Energy Sciences** 

Workshop on Superconductivity May 8-11, 2006

## HTS Superconductivity

Session B1 (yesterday): 20th anniversary of High T<sub>c</sub> Superconductivity 'Woodstock Session'

6th anniversary of MgB2 mini-Woodstock

54 sessions at this meeting with "supercond" in the title



This continues a 20 year tradition of <u>numerous</u> superconductivity sessions at the APS March Meeting.



## DOE Workshop, May 2006

#### The BES Report on

# Basic Research Needs for Superconductivity

George Crabtree

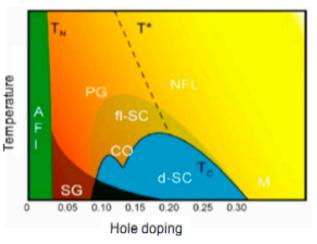
Argonne National Laboratory John Sarrao Los Alamos National Laboratory Wai Kwok Argonne National Laboratory Outline

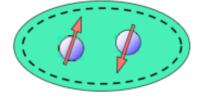
Electricity as Energy Carrier The Challenged Grid Superconductivity Solutions ★ Research Challenges

**Basic Energy Sciences** 

Workshop on Superconductivity May 8-11, 2006




**Basic Energy Sciences** 


Workshop on Superconductivity May 8-11, 2006

#### Enabling Superconductivity - Find The Mechanisms !

#### Tantalizing phenomena

p-, d-wave Cooper pairing Low charge density: Bose-Einstein condensation Nearby insulating, magnetic states High temperature "fluctuating superconductivity" Nanophase separation: stripes, checkerboards Two band superconductivity



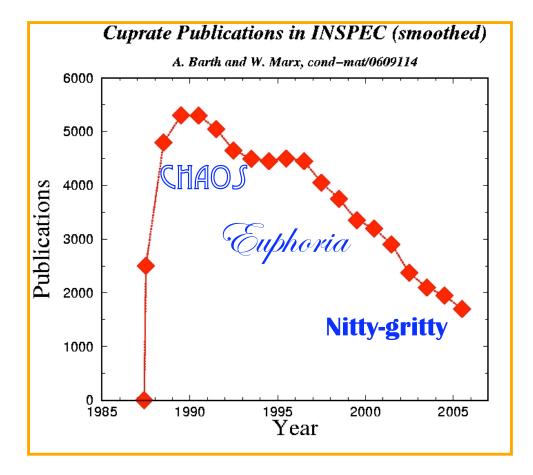


Cooper pairing spin fluctuations valence fluctuations phonons (classical BCS) Understand the exotic normal and superconducting states Challenges

"Map the genome" of high Tc: find the controlling factors Look for multiple pairing mechanisms Relate superconductivity to neighboring normal phases Find the simplifying emergent concepts

Superconductivity drives the frontier of complex materials




Basic Energy Sciences

Workshop on Superconductivity May 8-11, 2006



**Basic Energy Sciences** 

## Publication activity in HTS remains prodigious



It is essential to sustain the progress in HTS and the associated fundamental understanding and materials expertise that that is accumulating



## 20th Anniversary of High T<sub>c</sub>

## Nature March 2006

Science Nov 2006

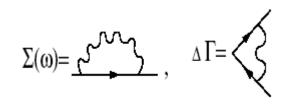


Given the successes of the microscopic theory of conventional superconductors, it seems natural to expect a similar all-encompassing theory for high-temperature superconductivity. But is it the best approach? Where are we heading?

After 2 decades of monumental effort, physicists still cannot explain high-temperature superconductivity. But they may have identified the puzzles they have yet to solve

# High *T*<sub>C</sub>: The Mystery That Defies Solution

Synopsis: elaboration and acceptance of the **mechanism** of HTS mechanism is not imminent




**Basic Energy Sciences** 

## Proposed Mechanisms of HTS Superconductivity

### [from D. J. Scalapino, gleaned from presentations at M2S-HTS, Dresden, July 2006]

- Jahn-Teller bipolaronsstripes (role of inhomogeneities)
- RVB-Gutzwiller projected BCS
- electron-phonon + U
- spin fluctuations
- charge fluctuations
- electric quadrupole fluctuations
- Ioop current fluctuations
- ■d-DW, d-CDW
- •quantum critical point fluctuations
- competing phases
- Pomeranchuk instabilities
- d-to-d electronic excitations



DJS: there is plenty of data available to decide between mechansims

Possibility: there is *too much* data to decide between mechanisms

Is "mechanism" the question ...?



What is needed to constitute .....

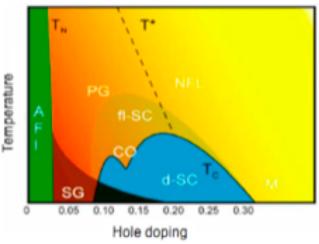
## A Faithful and Convincing <u>Mechanism</u> of HTS

Faithful theory

- \* (semi)quantitative explanation of the observations that are central to optimally doped HTS (focus!)
- \* no spurious predictions

Convincing theory

- \* majority of workers in the field accept the theory
- \* there are no seriously competing theories
- \* no `reasonably objective' person can disbelieve its general applicability
- *I.e. "BCS-like in its convincibility." Is this a plausible goal?*




## What is needed to constitute .....

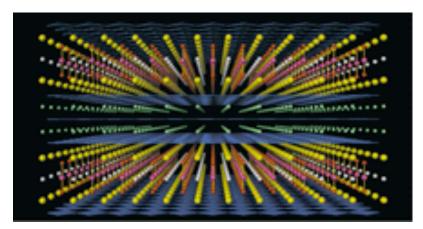
## A Faithful and Convincing <u>Theory</u> of HTS

*In principle*, to discover the <u>mechanism</u> \* focus on <u>optimally doped region</u> \* analogy: mag. impurities in BCS sc'or

In practice: entire phase diagram needs to be understood \* majority of workers seem to accept this \* this is a much broader goal than `the mechanism', it is `the theory'



Complication: there are other similar phase diagrams in low-Tc systems




What are the broadest issues for .....

## A Faithful and Convincing Theory of HTS

First address the broadest issues

Hg2223



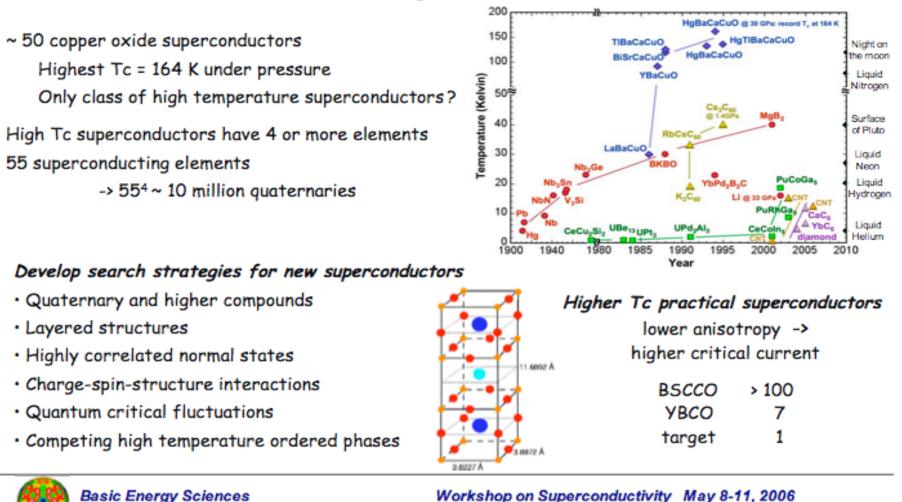
- SAMENESS: why layered cuprates and only cuprates?
   \* all HTS have CuO<sub>2</sub> planes; no others are HTS
   \* there are other quasi-2D doped insulating antiferromagnets; why only cuprates?
- VARIATION: why so much; what is the essence; what does it tell us?



What may be needed to comprise .....

## A Faithful and Convincing Theory of HTS

Several proposed mechanisms unify certain aspects of HTS Big issue: what distinctions need to be explained? Some propositions:


- Shape of Fermi surface (system dependent); effect on mechanism
- Value of  $T_c$  (within factor of two, with correct trends)
- Symmetry of superconducting order parameter
- Low E excitations: 1-particle; magnetic; phononic; other collective
- Inhomogeneities: patterns, connections to other phenomena
- Trend of T<sub>c</sub> in cuprate classes: [Bi] < [TI] < [Hg]</li>
- Trend of  $T_c$  with number of  $CuO_2$  layers (maximum at 3 layers)
- Pressure dependence of  $T_c$ : theory must work at any volume
- (many, many more related to the entire HTS phase diagram)

Theory of the entire phase diagram is a huge issue (an attractive one)



#### **Enabling Superconductivity - Find New Materials**

#### Discover next-generation materials

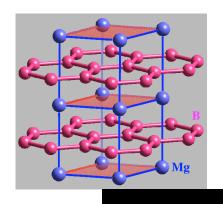


60

**Basic Energy Sciences** 

## More on Mechanisms+Materials

## Additional Developments in hTS Materials [hTS == unexpectedly high T<sub>c</sub>]


- ≻ 40: MgB<sub>2</sub>
- ➤ 40: Alkali-doped fullerenes
- > 35: (Ba,K)BiO<sub>3</sub> [BKBO] (discovered in 1986)
- > 25: Alkali-doped HfNCI, ZrNCI
- > 25: Elemental metals under pressure
- > 19: PuCoGa<sub>5</sub> a novel heavy fermion sc'or
- > 18:  $Y_2C_3$  -- who ordered this one?
- 2D triangular lattice oxides & chalcogenides



## MgB<sub>2</sub> is the champ (Akimitsu group, 2001)


MgB<sub>2</sub>: covalent bonds become metallic
 Deformation potential *D*=13 eV/A

 (amazingly large, especially for a metal)
 2D (cylinder) Fermi surfaces focus strength
 Yet structure remains stable: intrinsic covalency



J. M. An and WEP, Phys. Rev. Lett. (2001) J. Kortus et al., Phys. Rev. Lett. (2001) Y. Kong et al., Phys. Rev. B (2001) K.-P. Bohnen et al., Phys. Rev. Lett. (2001) ......more.....

Y. KONG, O. V. DOLGOV, O. JEPSEN, AND O. K. ANDERSEN



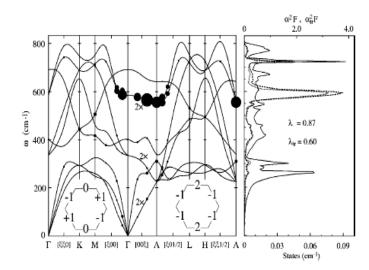
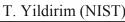




FIG. 1. Left: Calculated phonon dispersion curves in MgB<sub>2</sub>. The area of each circle is proportional to the mode  $\lambda$ . The insets at the bottom show the two  $\Gamma A$ E eigenvectors (not normalized), which apply to the holes at the top of the  $\sigma$  bands (bond-orbital coefficients) as well as to the optical bond-stretching phonons (relative change of bond lengths). Right:  $F(\omega)$  (full curve and bottom scale),  $\alpha^2(\omega)F(\omega)$ (broken), and  $\alpha^2_\mu(\omega)F(\omega)$  (dotted). See text.



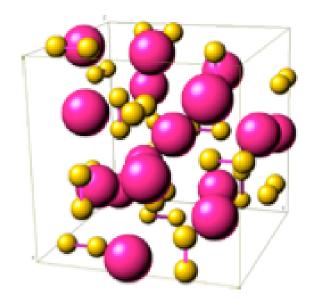




Basic Energy Sciences

BES Report on Basic Research Needs for Superconductivity http://www.sc.doe.gov/bes/reports/abstracts.html#SC

PHYSICAL REVIEW B 64 020501(R)

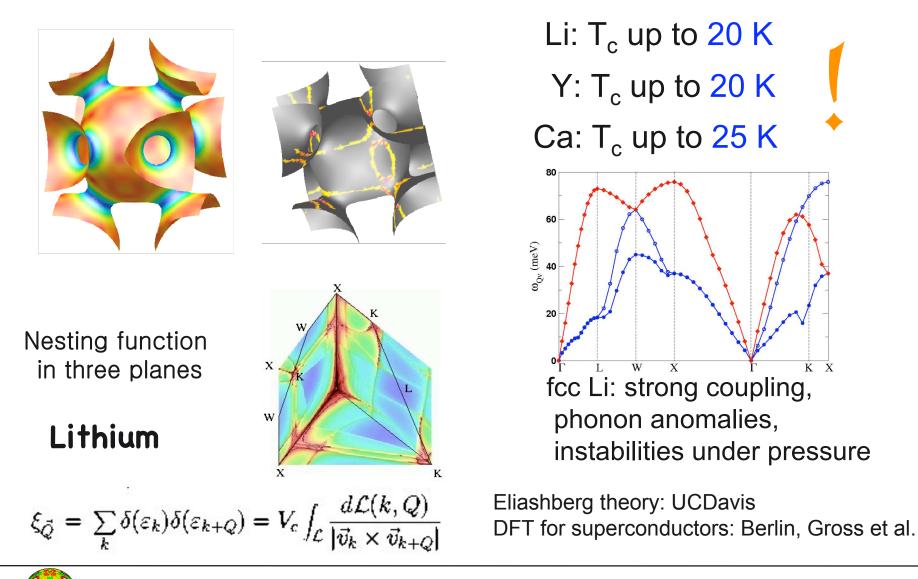

## Yttrium Sesquicarbide Y<sub>2</sub>C<sub>3</sub>

### Coupling to high frequencies?

Simple cubic Bravais lattice of  $Y_8C_{12}$  primitive cells Distinctive feature: triply-bonded  $C_2$  dimers

Singh & Mazin, 2004  $C_2$  dimer state near  $E_F$  $A_g$  modes: 120 K, 1000 K

Coupling to hard C<sub>2</sub> mode may be important for the `high' T<sub>c</sub>




 $T_c = 18 \text{ K}$  (Akimitsu group)

 $[T_{c}(La_{2}C_{3}) = 11 \text{ K}]$ 



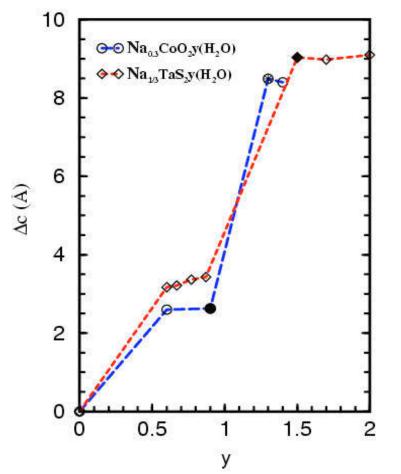
#### Pressure as a Tool to Produce Superconductors: Elemental Metals under Pressure: T<sub>c</sub>=20-25K





**Basic Energy Sciences** 

#### Observations about Carrier-doped Layered Transition Metal `Oxides'


- Electron-doped TaS<sub>2</sub>
- Hole-doped LiNbO<sub>2</sub>
- Hole-doped NaCoO<sub>2</sub> (hydrated)
- Electron-doped TiSe<sub>2</sub>

### Observation about Carrier-doped Layered Transition Metal Nitride

Electron-doped ZrNCI, HfNCI



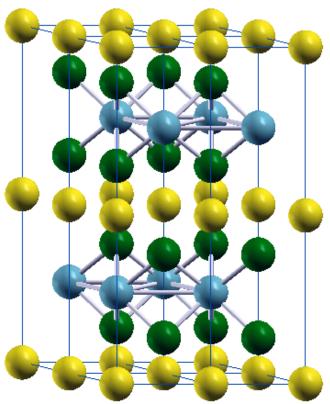
#### Co-Intercalated Layered Dichalcogenides (D. C. Johnston et al., 1983-4)



Several distinct phases y=0, 2/3, 0.8, 3/2, 2

 $Na_{1/3}TaS_2 \cdot yH_2O$ 

All have  $T_c = 4-5 K$ 


$$\begin{pmatrix} Y_{1/9}^{3+} TaS_{2} \\ La_{1/9}^{3+} TaS_{2} \\ Mn_{1/6}^{2+} TaS_{2} \end{pmatrix} \Rightarrow Ta^{+3\frac{2}{3}}$$

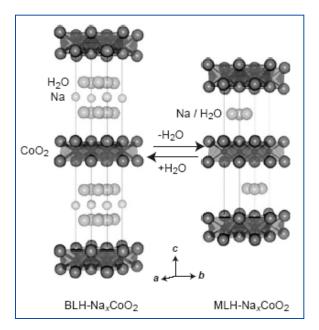


### Li<sub>1-x</sub>NbO<sub>2</sub>: 5 years after HTS (Stacy group, 1991)

- Layered TM oxide
- Trigonal-prismatic coordination
- Triangular lattice
- Nb d<sup>1+x</sup> configuration
- Single d(z<sup>2</sup>) band is occupied
- Hole-doped from semiconductor
- Single-band triangular lattice system
   Superconducting in a wide range around x ~ 0.5

 $T_c = 5.5 K$ 






### Na<sub>1-x</sub>CoO<sub>2</sub>, the Dehydrated Superconductor [add water!]

Triangular lattice Hole-doped from Co<sup>3+</sup> semiconductor Octahedral CoO<sub>6</sub> Na2 Nal **Edge-sharing** octahedra Superconducting around  $x \sim 0.3$ Co 00 Na

Jorgensen et al. (2003)

 $T_{c} = 4.5 \text{ K}$ 

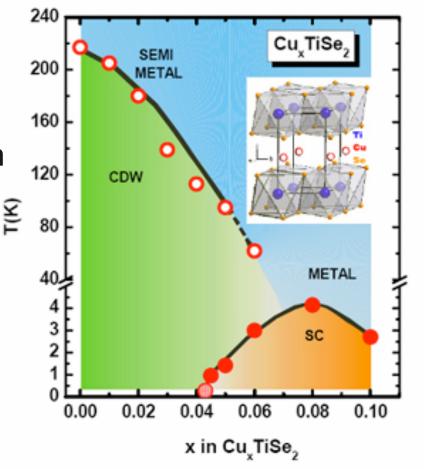


Na<sub>1-x</sub>CoO<sub>2</sub>\*yH<sub>2</sub>O

Takada et al., Nature <u>422</u>, 53 (2003); Adv. Mater. 16, 1901 (2004)



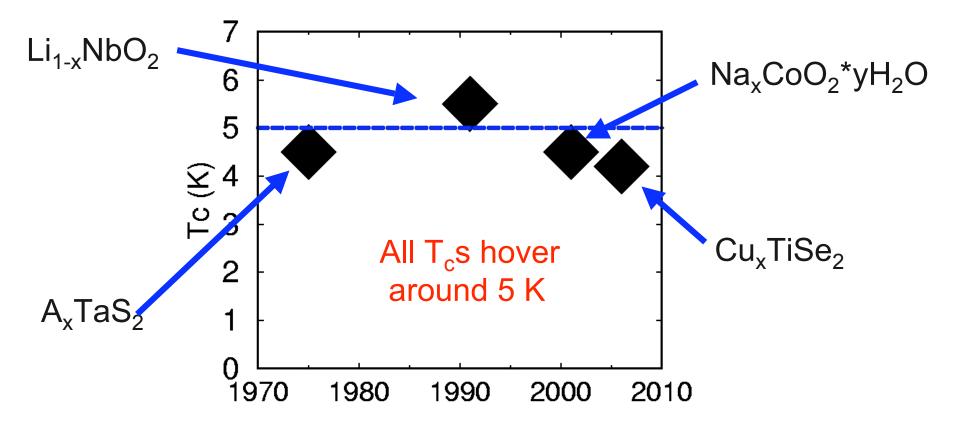
**C0O6** 


Workshop on Superconductivity May 8-11, 2006

## Cu<sub>x</sub>TiSe<sub>2</sub>: CDW--> Superconductivity

Morosan et al. (2005)

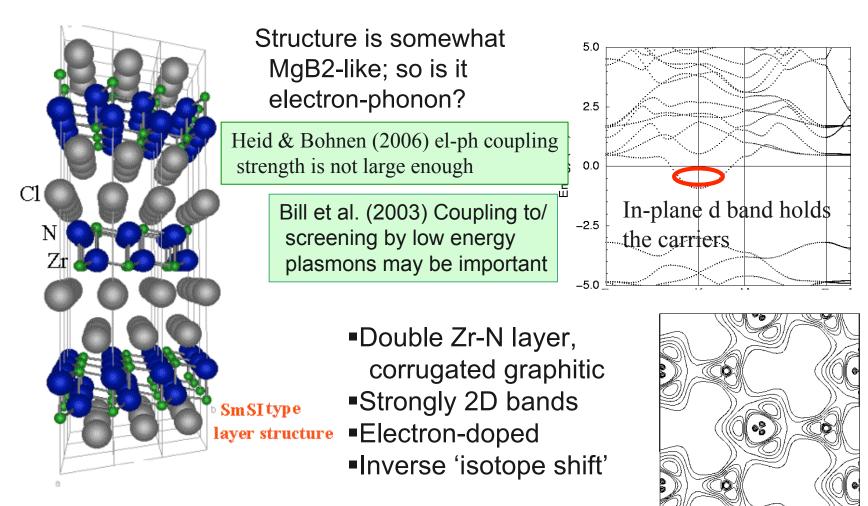
- Layered 2D TM chalcogenide
- Triangular lattice system
- Trigonal-prismatic coordination
- CDW has long been studied
- Nominal d<sup>0</sup> Ti configuration
- Electron-doped --> sc'y


Maximum  $T_c=4.2K$  at x=0.08





## Synopsis: T<sub>c</sub> in 2D Triangular Oxides/Chalcogenides

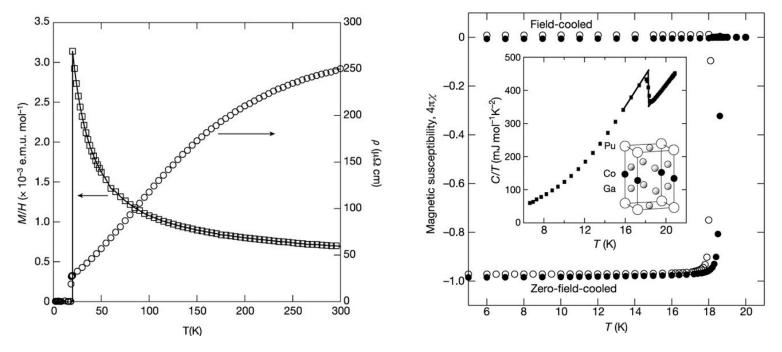

**Triangle Lattice Transition Metal Chalcogenides** 





**Basic Energy Sciences** 

## Alkali-doped A<sub>x</sub>ZrNCl (15 K) & A<sub>x</sub>HfNCl (25 K)



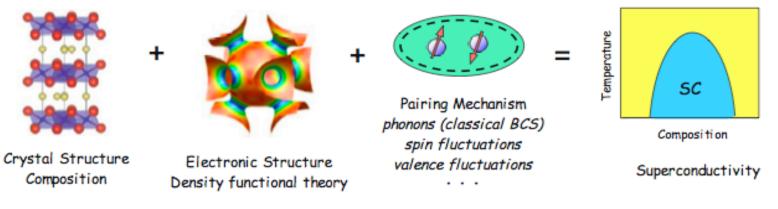

Superconductor-insulator transition at x=0.06



## *PuCoGa<sub>5</sub>: 18.5 K (Sarrao et al. 2002)*

### Order of magnitude higher than previous heavy fermion sc'y




Other heavy fermion superconductors:  $T_c < 2 K$ PuCoGa<sub>5</sub> may provide the key to HF sc'y mechanism

#### Enabling Superconductivity - Superconductors by Design

Discovery by serendipity: Hg (1911), copper oxides (1986), MgB<sub>2</sub> (2001), NaCoO<sub>2</sub>:H<sub>2</sub>O (2003)

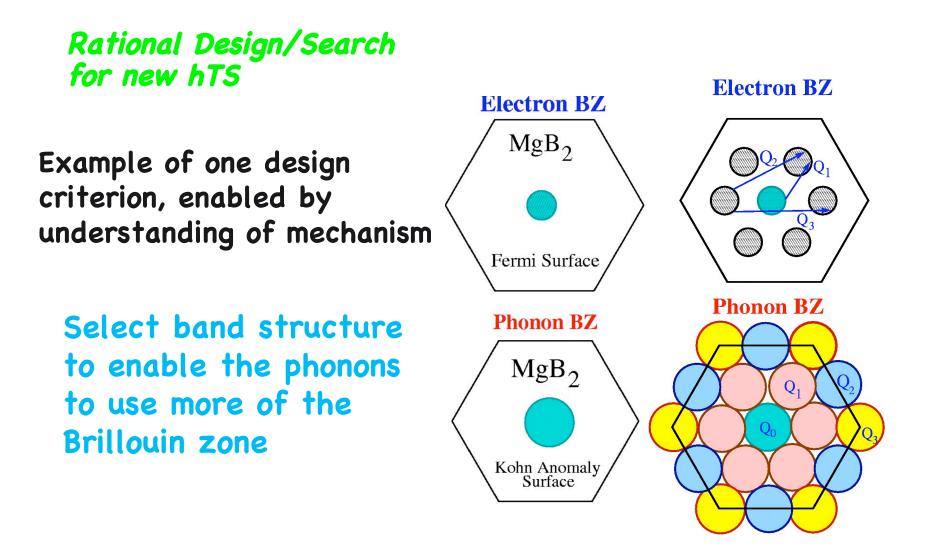
Discovery by empirical guidelines: competing phases, layered structures, light elements, ... B-doped diamond (2004), CaC<sub>6</sub> (2005)

#### Create a paradigm shift to superconductors by design



Challenges: computationally designed superconductors

- Electronic structure calculation by density functional theory
- · Large scale phonon calculations in nonlinear, anharmonic limit
- · Formulate "very strong" electron-phonon coupling (beyond Eliashberg)
- Determine quantitative pairing mechanisms for high temperature SC



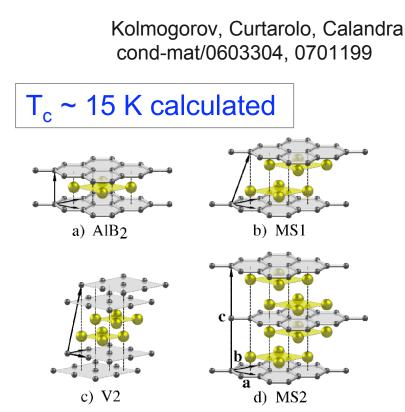

Basic Energy Sciences

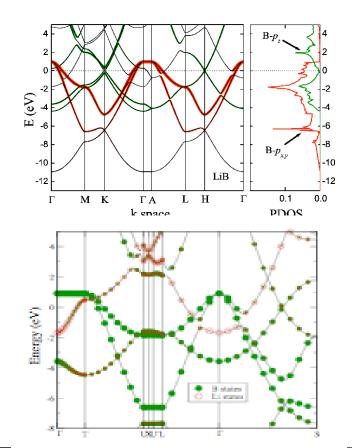
Workshop on Superconductivity May 8-11, 2006



**Basic Energy Sciences** 



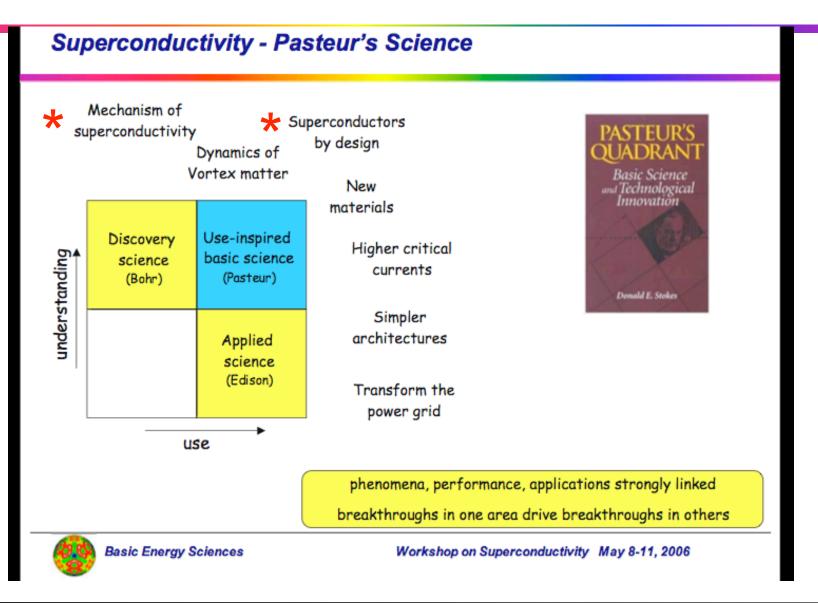




## Database driven design/search

## .....imposing phase stability.

Example: Design of Li<sub>2</sub>B<sub>2</sub> ("MgB<sub>2</sub>"). Considered several structures. Checked stability. Calc'd phonons.

Rational Design/Search for new hTS








**Basic Energy Sciences** 

Workshop on Superconductivity May 8-11, 2006



