Basic Research Needs for Superconductivity:

Structure & Dynamics of Vortex Matter

Wai -K. Kwok

Materials Science Division Argonne National Laboratory

Outline

Current challenges Enabling characteristics of vortex matter Basic research & innovative approaches to overcome limitations

Grand Challenges of Superconductivity

- Transform the power grid to deliver abundant, reliable, high-quality power for the 21st century
 - first steps within reach (1G & 2G wires)
 - full transformation requires breakthrough basic research
- Achieve a paradigm shift from materials by serendipity to materials by design
- Discover the mechanisms of high-temperature superconductivity
- Predict and control the electromagnetic behavior of superconductors from their microscopic vortex and pinning behavior
- Multi-scale challenge and bridges the gap between basic research and applied technology

Basic Energy Sciences

Enable the operation of HTS at their high temperatures and high magnetic fields

- Enhance the critical current to its highest possible value
- Raise the irreversibility line as high as possible

The performance of the critical current and the irreversibility line are controlled by vortex behavior

Basic Research is needed to understand and control vortex matter in its static and dynamic configurations

Basic Energy Sciences

Current Status: 2nd Generation HTS Coated Conductors

At 20K, only 20% of the depairing current At 77K, only 8% of the depairing current

Inadequate high field critical current

L. Civale and S. Foltyn (LANL) http://www.energetics.com/meetings/supercon05/html

J.L. MacManus-Driscoll et al., Nature Materials 3, 439 (2004)

Large anisotropy leads to strong field orientation dependence of J_c(H)

How do we meet these challenges?

BES Report on Basic Research Needs for Superconductivity http://www.sc.doe.gov/bes/reports/abstracts.html#SC

Basic Energy Sciences

Vortices Determine the Electromagnetic Behavior

Rich Thermodynamic Vortex Phases in HTS

BES Report on Basic Research Needs for Superconductivity http://www.sc.doe.gov/bes/reports/abstracts.html#SC

R > 0

Liquid State

3D/2D

YBCO

Understanding Vortex Dynamics to Achieve the Highest J_c

Viscous flow and the absence of critical current

Achieve the depairing current in the vortex solid & 'pin' the vortex liquid

Basic Energy Sciences

Enhancing J_c (T, H, and θ) in Coated Conductors

Basic Energy Sciences

Challenges Ahead

Increase vortex pinning across the broad spectrum of T, H, θ

Novel Strategies to Increase J_c(T,H)

- Nanoscale defect arrays
 - Magnetic pinning
- Thermally Driven Vortex Creep

Isotropically enhance the irreversibility line

Meso/Nano shaped defects

Can we 'pin' or control vortex liquid flow

- Enhance Viscosity to Glassy-like State
 - Pinning Schemes / Jamming
 - Flow Control via Nano-Patterning

Self-Assembled Nano-Pinning Landscape

Basic Energy Sciences

Augment Core Pinning with Magnetic Pinning

Creation of vortex with nano-magnetic rods

Combine core pinning with magnetic pinning energy

 $U_m = 2\pi \int H(r) M_s r dr$

Randomly oriented frozen flux state Glassy pinning landscape

- Pinning energy proportional to magnetic rod volume > vortex core volume
 Temperature independent pinning sites
- Shield surrounding from magnetic flux using soft magnets

Potential to enhance J_c and H_{c2}

I. F. Lyuksyutov & V. L. Pokrovsky, Advances in Physics, 54 (1), 67 (2005)

Basic Energy Sciences

Directional Vortex Flow Control with Shaped Pinning Wells

C. S. Lee, et al. Nature 400, 337 (1999) J.E. Villegas, et al. Science 302, 1188 (2003)

Ratchet signal in irradiated YBCO

magnetic pinning dots

Ratchet threshold can be set by magnetic field

Basic Energy Sciences

Dynamics of Composite Vortices: controlling viscosity

Basic Energy Sciences

Vortex Dynamics Under Extreme Conditions

Thermal Runaways & Flux Avalanches Vortex motion \implies dissipation, heat \implies reduced $J_c \implies$ more vortex motion

Positive feedback reduces J_c and increases heat formation leading to large flux avalanches and thermal runaways

Magnetic Flux Entry in MgB₂

Flux Avalanches in Nb film R. J. Wijngaarden, Free University

Simulation of Thermo-Magnetic Avalanches with Random Defects

Model macroscopic flux response arising from microscopic vortex behavior through multiscale simulations

I.Aranson, A.Gurevich et al. PRL 2005

Basic Energy Sciences

Controlling Bulk Dynamics with Nanoscale-structures

Passive pinning schemes to control thermomagnetic flux response through nano-patterning

AFM image of 1 x 1 µm² hole array in Nb

Corresponding Mag-Opt. Image

http://www.sc.doe.gov/bes/reports/abstracts.html#SC

Can we combine passive pinning schemes with active vortex channeling strategies to control macroscopic flux behavior

From Phenomenological to Microscopic Theory

Microscopic Theory of Vortex Pinning:

Structure of vortex core in unconventional superconductorsNew horizons for ATOMIC SCALE pinning schemes

Microscopic Theory of Vortex Dynamics:

Modification of core levels structure by the host matrix

Shed light on vortex friction vs viscosity

Physics of Nonequilibrium vortex matter:

Response of the glassy states under high driving currentsKey to promote self-healing strategies for HTS

Basic Energy Sciences

Controlling Vortex Matter is a Multi-scale Challenge

Basic Energy Sciences

Superconductivity Research Continuum

Discovery Research	Use-inspired Basic Research	Applied Research	Technology Maturation & Deployment
 Room-temperature superconductor (Grand Challenge) Superconductors by design (Grand Challenge) Atomic scale control of materials structure and properties Tuning competing interactions for new phenomena Unravel interaction functions generating high temperature superconductivity Predictive understanding of strongly correlated superconductivity Microscopic theory of vortex matter dynamics Nano-meso-scale superconductivity 	 100K isotropic SC (Grand Challenge) Achieve theoretical limits of critical current (Grand Challenge) 3-d quantitative determination of defects and interfaces Intrinsic and intentional inhomogeneity "Pinscape engineering" and modeling of effective pinning centers Next Generation SC wires Vortex Matter Reseat 	 Technology Milestones: 2G coated conductor carrying 300 A x 100 m (2006) In-field performance for 50 K operating temperature electric power equipment with ½ the energy losses and ½ the size wire with 100x power capacity of same size copper wires at \$10/kiloamp-meter. Assembly and utilization R&D issues Materials compatibility & joining issues 	 Cost reduction Scale-up research Prototyping Manufacturing R&D Deployment support
Office of Science BES		Technology Offices EDER	

Basic Energy Sciences