Near-Surface Alloys for Improved Catalysis

Manos Mavrikakis

Department of Chemical and Biological Engineering University of Wisconsin – Madison Madison, Wisconsin 53706

Acknowledgements

- Ratko Adzic (BNL)
- J. Chen (U of Delaware)
- Jeff Greeley, Ye Xu, Anand Nilekar
- Jens Nørskov and colleagues @ CAMP Denmark

- DoE (BES-Chemical Sciences)
- NSF CTS
- NPACI, DOE-NERSC, PNNL (supercomputing resources)

Outline

- H₂ catalytic chemistry:
 - Identifying Promising Catalysts from 1st Principles:
 H₂ and H on Bimetallic Near Surface Alloys (NSAs)
- Oxygen Reduction Reaction (ORR)
 - Improved catalysts with ML structures
 - Further improvements with mixed-metal ML structures

Hydrogen on NSA's

- J. Kitchen, N. Khan, M. Barteau, J. Chen, B.
 Yashhinskiy, and T. Madey, Surf. Sci. 544 (2003) 295
- 2. R. Schennach, G. Krenn, B. Klötzer, K. Rendulic, Surf. Sci. **540** (2003) 237

Methods

- Density Functional Theory DACAPO total energy code ^{1,2}
- Periodic self-consistent PW91-GGA³
- Ultra-soft Vanderbilt pseudo-potentials⁴
- Plane wave basis sets with 25-Ry kinetic energy cut-off
- Spin polarization as needed
- ✤ Four-metal-layer slabs; (2x2) unit cell; top two layers relaxed
- ✤ First Brillouin zone sampled at 18 *k*-points
- ✤ Nudged Elastic Band method for reaction paths ⁵
- 1. B. Hammer, L. B. Hansen, J. K. Nørskov, *Phys. Rev. B* 59, **1999**, 7413.
- 2. J. Greeley, J. K. Nørskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 53, 2002, 319.
- 3. J. P. Perdew et al., Phys. Rev. B 46, 1992, 6671.
- 4. D. H. Vanderbilt, *Phys. Rev. B* 41, **1990**, 7892.
- 5. G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 2000, 9978.

Ideal Bimetallic Near Surface Alloys

- Segregation properties of two metals are critical
- Consider two special classes:
 - Overlayers
 - Subsurface Alloys

Overlayers*

Subsurface Alloys

Stability of NSA's with Respect to Hydrogen-induced Segregation

B.E._H on Close-Packed Metal Surfaces

Correlation of B.E._H with Clean Surface Properties

O_2 dissociation: Does E_b^{TS} follow E_b^{FS} ?

Y. Xu, A. V. Ruban, M. Mavrikakis, JACS <u>126</u>, 4717 (2004).

BEP Plot for H₂ Dissociation onNSA's

J. Greeley, M. Mavrikakis, Nature Materials 3, 810 (2004)

Metal monolayer deposition by galvanic displacement of a less noble metal monolayer deposited at underpotentials

Electroless (spontaneous) deposition of one metal on another metal

Brankovic, S. R.; Wang, J. X.; Adzic, R. R. *Surf. Sci.* **2001**, *474*, L173

Zhang, J.; Vukmirovic, M.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Ed. 2005, 44, 2132 Brankovic, S. R.; McBreen, J.; Adzic, R. R. J. *Electroanal. Chem.* **2001**, *503*, 99

Sasaki, K.; Wang, J. X.; Balasubramanian, M.; McBreen, J.; Uribe, F.; Adzic, R. R. *Electrochim. Acta* **2004**, *49*, 3873

A new kind of Minority/Defect site for TM Catalysis

J. Greeley, M. Mavrikakis, *Catalysis Today* <u>111</u>, 52 (2006)

Isolated metal hetero-atoms near metal surfaces can be viewed as generating an alternative type of "defect/minority" surface sites, associated with a different kind of near-surface "impurity".

These sites could be more poisonresistant and possess better catalytic kinetics than the rest of the surface sites.

NSA's - Summary

- First-Principles Methods can help with identifying promising bimetallic NSAs with interesting catalytic properties
- Example:
 - H and H₂ on NSA's: Fine-tuning BE_H is possible
 Some NSA's: Activate H₂ easily AND bind atomic
 H weakly → useful for highly selective low T H-transfer reactions
- Developing Catalyst Preparation Techniques with Layer-by-Layer control of metal deposition (ALD-like) is critical for making the desired NSAs
- New type of "NSA" defect site

Low Temperature Fuel cells

Representative Catalysis

 $2H_2 \leftrightarrow 4 H^+ + 4 e^-$

 $O_2 \leftrightarrow 2 O^-$

 $2O^{-}+2H^{+}+2e^{-}\leftrightarrow 2OH^{-}$

 $2OH^- + 2H^+ \leftrightarrow 2H_2O$

Oxygen Reduction Reaction

(ORR)- Very slow kinetics

Anode:

Cathode:

Proton Exchange Membrane

Chemical and Biological Engineering

College of Engineering

Pt monolayers on transition metals

- Pt monolayers on •
 - Ru(0001), Ir(111), Rh(111), Au(111) and Pd(111)
 - Ru(0001), Ir(111) and Rh(111) lead to compression of Pt overlayer
 - Au(111) leads to expansion of Pt overlayer
 - Pd(111) has almost same lattice constant as Pt(111)

Pt monolayer

Substrate

(Ru, Ir, Rh, Pd, Au)

College of Engineering

O₂ Dissociation Barrier

College of Engineering

University of Wisconsin-Madison

Angew. Chemie, Int. Ed., 44, 2132 (2005)

OH Formation Barrier

The best catalyst performs a Balancing Act

DEPARTMENT OF

Chemical and Biological Engineering

J Zhang, MB Vukmirovic, Y Xu, M Mavrikakis, RR Adzic, Angew. Chemie, Int. Ed., 44, 2132 (2005)

College of Engineering

Further Decrease of Pt -loading: The role of "OH poisoning" in ORR

- Pt binds OH strongly \rightarrow OH blocks active sites on Pt
- Replace part of the Pt_{ML} on Pd(111) with another transition metal M

Hypothesis

M will attract initial OH and induce repulsion on neighbouring Pt-OH → decrease OH binding and OH coverage on Pt

DEPARTMENT OF

Chemical and Biological Engineering

College of Engineering

ORR Experiments on $(M_xPt_{1-x})_{ML}/Pd(111)$: Current .vs. Surface Composition

- Effect of addition of different amount of M: Ir & Ru in Pt_{ML}/Pd(111)
 - Around 20% M gives highest ORR activity

J Zhang, MB Vukmirovic, K. Sasaki, A. U. Nilekar, M Mavrikakis, RR Adzic, JACS, 127, 12480 (2005)

D E P A R T M E N T O F

Chemical and Biological Engineering

College of Engineering

Mixed metal Pt monolayer

- Modeling these systems with DFT:
 - $(Pt_3M)_{ML}/Pd(111) \text{ to get}$ $\theta_M = 0.25 \text{ ML}$
- Calculate: OH+OH or O+OH repulsion with M being:

Au	Os
Pd	Re
Pt	
Rh	
Ru	

Pt monolayer

Pd Substrate

College of Engineering

OH+OH or O+OH optimal structures

M with reactivity less or equal compared to Pt in $Pt_{ML}/Pd(111)$: Au, Pd, Pt

1st OH on Pt-top and 2nd OH on Pt-Pt-bridge site

M with reactivity higher than Pt in Pt_{ML}/Pd(111): Rh, Ru, Ir

 $1^{st}\ OH$ on M-top and $2^{nd}\ OH$ on Pt-top

M with much higher reactivity than Pt in $Pt_{ML}/Pd(111)$: Os, Re (break the OH bond to form H_2O and O)

O on M-top and 1st OH on Pt-Pt-bridge site

D E P A R T M E N T O F

Chemical and Biological Engineering

College of Engineering

Comparison of theory with experiment

 $(Pt_3M)_{ML}/Pd(111)$

400% increase in ORR activity for $(Pt_3Re)_{ML}/Pd(111)$ compared to Pt(111)

J Zhang, MB Vukmirovic, K. Sasaki, A. U. Nilekar, M Mavrikakis, RR Adzic,

JACS, 127, 12480 (2005)

DEPARTMENT OF

Chemical and Biological Engineering

College of Engineering

ORR - Summary:

- A combination of first-principles studies with experiments can identify key ٠ **ORR** reactivity descriptors:
 - Kinetics of O-O Bond-breakingKinetics of O-H Bond-making

 - OH-poisoning

- Use less Pt: $Pt_{MI}/Pd(111) \rightarrow 30\%$ more current [compared to Pt(111)] ٠
- Use even less Pt: $Pt_3M/Pd(111) \rightarrow up$ to 400% increase in current ۲ [compared to Pt(111)]
- First-principles can help with further improvements of ORR catalysts, by ٠ identifying materials which are:
 - Cheaper (low Pt loading)
 - More active
 - Increased stability of Pt against oxidation

Acknowledgements

- Ratko Adzic (BNL)
- J. Chen (U of Delaware)
- Jeff Greeley, Ye Xu, Anand Nilekar
- Jens Nørskov and colleagues @ CAMP Denmark

- DoE (BES-Chemical Sciences)
- NSF CTS
- NPACI, DOE-NERSC, PNNL (supercomputing resources)