Nanowire Solar Cells

Peidong Yang Department of Chemistry University of California, Berkeley Materials Science Division Lawrence Berkeley National Laboratory

Emerging PV

MRS Bulletin, Jan 2005

Emerging PV

Alivisatos et al. Science 2002, 295, 2425.

Why nanowires are important?

PV Performance Metrics

$$Efficiency = \frac{P_{out}}{P_{in}} = \frac{FF \times V_{oc} \times J_{sc}}{P_{in}}$$

Emerging PV

Use of solar at terawatt levels requires drop in \$/W_p

Dye-sensitized Photoelectrochemical Cell

rrrr

- 1) Find dyes that function efficiently across the visible and near-IR
- 2) Raise open-circuit voltage closer to its theoretical maximum
- 3) Increase the electron diffusion length in the oxide anode, $L_d = (D_e T)^{1/2}$

Nanoparticle DSC	Nanowire DSC					
random, polycrystalline network	oriented single-crystalline channels					
slow diffusive transport	fast band conduction (field-assisted)					
efficient for films $\sim 10 \ \mu m$ thick	in principle, efficient for much thicker cells					
high internal surface area	smaller internal surface area					

Nanowire DSC: Design Principle

high nanowire density long, thin nanowires

electrode	length (µm)	diameter (nm)	density (x10 ¹⁰ cm ⁻²)	SA	
nanoparticle	8 - 10	15 - 30	n/a	800 - 1000	
ideal nanowire	20	60	3	1080	
achieved NW	20	130	0.3	~200	

Large-Scale Nanowire Array Synthesis

1st: dip-coat to get ZnO quantum dots

2nd: grow nanowires from QD seeds

L. Greene et al. Angew Chem. Int. Ed. 42, 3031, 2003.

- Nanowire densities of 1-40 billion cm⁻²
- Single-crystalline wires in direct contact with the substrate
- Inexpensive and environmentally benign
- Compatible with arbitrary substrates of any size

Control of Nanowire Aspect Ratio

Alignment Control

Materials Sciences Division

- TEM shows that the nanowires are single crystals
- Wire surfaces are clean (Raman, EELS) after 400 °C treatment

Characterization of Nanowire Arrays

FETs: Wires have high e- mobility

electron diffusitivity: $D_n=0.05-0.5 \text{ cm}^2 \text{s}^{-1} [D = k_B T \mu/e]$ Ensure larger electron diffusion length, avoiding possible interfacial recombination Law, M., Greene, L. et al. Nature Mater. 4, 455 (2005).

Nanowire based DSC

 $\eta_{\text{PCE}} = 1.5\%$ under AM 1.5 G conditions

- NW cells are competitive with thin TiO_2 nanoparticle cells ($\eta_{cc} \sim 100\%$)
- NW cells outperform ZnO nanoparticle cells

Law, M., Greene, L. et al. Nature Mater. 4, 455 (2005).

Nanowire DSC

Faster electron injection in NW cell

Bi-exponential (<250fs, 3ps)

VS.

Tri-exponential (<250fs, 20ps, 200ps)

Time Scale for Electron Injection and Transport

WALTIAIS JUITILES DIVISION

Engineer active interface to reduce recombination

Core-sheath Nanowire Cells

Overcoat the nanostructured electrode with an insulating or semiconducting oxide

Reduce recombination

- Physically separate electrons and holes
- Form a tunneling barrier
- Passivate recombination centers on oxide surface

Shift band edge to increase V_{oc}

- Use an oxide with a higher band edge energy
- Form dipole layer that bends band upwards

TABLE	E 1:	Bulk	Charact	teristics	o	f the	Met	al	Oxi	ides U	sed i	n Tl	nis St	tudy	7

metal oxide	band gap (eV)	$E_{\rm VB} ({\rm eV} vs {\rm AVS})^a$	$E_{\rm CB} ({\rm eV} vs {\rm AVS})^a$	$Pzc (pH)^{b}$
ZnO	3.2	-7.4	-4.19	8.5-9.5
TiO ₂ (anatase)	3.2	-7.4	-4.21	5.5-6.5
Al_2O_3	8.0-9.5	-9.9	-1.6	8.5-9.5
	G 1 F		· · · · · · · · · · · · · · · · · · ·	D \

^{*a*} AVS = Absolute Vacuum Scale. From references 18–20. ^{*b*} The point of zero charge (Pzc) depends on sample preparation, impurities, etc. From references 21 - 23.

Gregg, B. NREL.

Atomic Layer Deposition (ALD)

Oxides: Al₂O₃, TiO₂, Ta₂O₅, Nb₂O₅, ZrO₂, HfO₂, SnO₂, ZnO, La₂O₃, Y₂O₃, CeO₂, Sc₂O₃, Er₂O₃, V₂O₅, SiO₂, In₂O₃, ... **Perovskites**: SrTiO₃, BaTiO₃, LiNbO₃, LaMnO₃ ... **Nitrides**: AlN, TaN_x, NbN, TiN, MoN, ZrN, HfN, GaN, ... **Fluorides**: CaF₂, SrF₂, ZnF₂, ... **Metals**: Pt, Ru, Ir, Pd, Cu, Fe, Co, Ni, ... **Carbides**: TiC, NbC, TaC, ... **Mixed structures**: AlTiN_x, AlTiO_x, AlHfO_x, SiO2:Al, HfSiO_x, ... **Sulfides**: ZnS, SrS, CaS, PbS, ... **Nanolaminates**: HfO₂/Ta₂O₅, TiO2/Ta₂O₅, TiO₂/Al₂O₃, ZnS/Al₂O₃, ATO (AlTiO) ... **Doping**: ZnO:Al, ZnS:Mn, SrS:Ce, Al₂O₃:Er, ZrO₂:Y, ... rare earth metals (Ce3+, Tb3+ etc.) also co-doping

Planar Systems, Inc.

Nanowire-polymer Hybrid Cell

Nanowire-polymer Composite Film

200 nm

The Ideal Nanowire Cell

- Fully interdigitated donor-acceptor interface
- Acceptor wire array: high density, smaller band gap
- Donor: polymer/nanoparticles, maximize absorption
- Interface engineering: reduce recombination.

• Applicable to DSC, hybrid, and conventional semiconductor cells. *Materials Sciences Division*

Acknowledgement

Dr. Matt Law Lori Geene Dwaud Tan

Funding

DOE

ITRI