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Our planet - sunlight and water
=> hydrogen + oxygen => energy!



Ideal! - but to be realistic:

The "Solar Constant” is 1.37 x 10 3 W/m2

So Earth receives 1.2 x 1017 W insolation or   
1.56 x 1018 kWh/year in total.

1 kg hydrogen  = 39.4 kWh

So  sunlight represents  3.9 x 1016 kg H2



Typical solar cell efficiency is 10% so 
midday electric power is 100 W/m2,

Annual energy harvest (N. Europe) 
80kWh/m2 , or 2 kg. H2

But 0.13% of earth’s surface covered 
with PV panels of 10% efficiency  =
present world total energy demand!

It’s a matter of scale and economics!

Present-day PV is too costly - is there
an alternative?



Hydrogen generation by solar photolysis of water
remains the prime target of research in photoelectrochemistry.

However electrolysis of water requires ∆V >  1.23 V
(1.45V adiabatic), i.e. three silicon PV cells in series

There are two options:

1. The brute force approach: use solid state semiconductor
PV arrays, electronic power management systems matched
to a central electrolyser..

2. The direct water decomposition by photoelectrochemical 
cells - can it compete? Possible advantages, - cheap basic
materials, low cost processing, simple system.



Regenerative photoelectrochemical cells

H. Gerischer J.Electrochem Soc. 1966 113, 1174



Generation of hydrogen by photoelectrolysis of water
(n-type semiconductor electrode)



Semiconductor - electrolyte junctions -photoelectrochemistry
The photovoltaic effect requires a contact between two materials with 
different conduction mechanisms -two semiconductors, n- and p-type, a 
metal and a semiconductor (Schottky) or a semiconductor and an
electrolyte in photoelectrochemistry (Becquerel, 1839)

Narrow band-gap semi-
conductors whose photo-
response matches the 
solar spectrum are in
general unstable in 
contact with electrolytes
- so a sensitization 
method is required for
wide band-gap, stable 
semiconductors.



Semiconductor energy levels
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Bands and potentials
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Efficiency of direct photolysis

If it is assumed that all the photons emitted by the sun below 387.5 
nm (band gap of anatase is 3.2 eV) are converted by the TiO2 into 
electric current the photocurrent would be 0.5 mA/cm2 and the solar 
to chemical conversion efficiency 0.7% in the absence of any applied  
bias.



First report of a dye-sensitised photoeffect on an 
illuminated semiconductor  - Moser, Vienna, 1887.



Photoelectrochemical processes in a dye-
sensitized solar cell.



Photochemical energetics 
and structure of DSC

MediatorRed Ox

Cathode

Maximum
Voltage

h  
  

S¡/S+

S*

Diffusion

ElectrolyteDyeTiO2

Conducting
 glass

Injection

 E vs
NHE
(V )

1.0

0.5

0

-0.5

e - e -

 TiO2 with monolayer of dye

Glass
Fluorine-doped SnO2

Redox electrolyte I-/I3-
Pt Catalyst

Glass

Working 
electrode

Counter 
electrode

Fluorine-doped SnO2

e-

e-



The natural prototype photochemical dye -
chlorophyll



Standard dye for photoelectrochemical  cell development -
the EPFL « N3 » dye
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Optical absorption of titania -
development of sensitizing dyes.



Characteristics of dye-sensitized solar cell
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SEM image of a mesoporous titania film.

100 nm



Product concept - flexible cells
(Konarka Inc., USA)



Product concept - flexible cells
(Hitachi-Maxell, Japan)



Outdoor installation -
CSIRO, Newcastle NSW, Australia
(Sustainable Technologies International, Australia)



Strategy for solar hydrogen

• Water photolysis on oxide semiconductor 
electrodes

• Dye-sensitized tandem cell to provide 
voltage boost for water cleavage by 
visible light

• Relevance of hydrogen generation by 
solar photoelectrolysis of water to future 
hydrogen economy



mesoscopic WO3 or Fe2O3 film

conductive glass support

Advantage of nanocrystalline
oxide electrodes:

1) translucent electrode -
avoids light scattering losses

2) Small size is within minority 
carrier diffusion length, the valence
band holes reach the surface before 
they recombine.

Nanocrystalline oxide photoanode



Ferric oxide (Fe2O3)- SEM image of spray-
deposited electrode for water photolysis



Tandem booster cell with spectral splitting

QuickTime™ and a Graphics decompressor are needed to see this picture.





Schematic of tandem photolysis system



Laboratory test cell in operation
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Synthetic Liquid Hydrocarbons

+
Is this the Future?

Hydrogen  Carbon
Electricity from 

renewable sources
and electrolysis
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