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Self-assembling supra-molecular
systems

Example of
supramolecular
hierarchy: the
skeleton of a sea
sponge
(Eupectella, J.
Aizenberg,
2003)




What questions can physicists answer?

What is the mechanism of self-assembly?
What intermediates, kinetic bottlenecks?

How do the assembly pathways depend on
environment?

What are the dynamics of the final complex?

What physical properties emerge from a
given hybrid structure?

How to design a biological metamaterial.



Viruses: best size/complexity ratio?

Most viruses are NUCLEIC
symmetric: icosahedral or  ACID
helical capsid structures.

Most capsids are
composed of a small
number of types of
proteins.

CAPSID

Session L34: Virus-Inspired Supramolecular Structures
Tuesday afternoon, March 6, 2007, APS Meeting.



Mechanism of self-assembly: theory

Thermodynamics

N=48 N=72

Q R. Bruinsma et al., Phys.
Rev. Lett., 2003

A. Zlotnick, J. Mol. Rec., 2005

Physical Kinetics

Filament/crystal polymerization
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Mechanism of self-assembly:
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Assembly and dynamics — single virus

Optical tweezers

DNA tether length

Time

®29: the strongest motor known
Characterization of the
mechanical work cycle
Bustamante et coll., Cell, 2005

Atomic force
microscopy

G. Wauite et coll., PRL, 2006
Continuum theory holds —
important for interpretation of
dynamics



Detection and manipulation of single
viruses — a need for new methods

Detection Manipulation
Ignatovich and
Novotny, PRL 2006 ~
_— | " o — F{ f * Fluorescence
ATTEMUATOR _ T ”*‘l[i][' ‘“7 Y lgG
;.r .

(ch
. |
' FLOWCELL | .
] | )
F‘INHOLE L 1

SPUT@\M
10 20 20 A0 50 =16]
DETECTOR QUISITION Time, millsaconds

Klenerman et coll., JACS, 2006



F=-aVE?
Two ways to reach subwavelength particle
manipulation

Increase polarizability Use near-field: sharper
_ gradients and field
Protein coat enhancements
(capsid)
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C. Chen et al., Nano Lett., 2006 Okamoto and Kawata, PRL, 1999



The first questions

Will VLP models be relevant for studying viral
processes?

What forces and what optical signals can be
expected from near-field?

<50 nm




Aperture-trap: experimental setup
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First results
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3D field intensity mapping

a) exposure
threshold
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Amarie D, Rawlinson ND, Schaich WL, et al.
Three-dimensional mapping of the light intensity transmitted through nanoapertures
NANO LETTERS 5: 1227-1230 JUL 2005




Tailoring field distributions and
enhancements

Max. Enhancement: SP Modes
3000

Tonuta et al., Nano
Letters, 2007

Transmission




On-going projects

Optothermal ratchet

Laser ON

Laser OFF - i .

Laser ON




Virus-like particles
-from probes to metamaterials-
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Chen, C. et al. Nanoparticle-Templated Assembly of Viral Protein Cages. Nano Letters 6,
611-616 (2006).




Particle acts as a template promoting

self-assembly

~90%
encapsulation
efficiency.
(As good as
viral RNA)

i



Core-induced polymorphism

Sun et al., PNAS, 2007



Photothermal In-vivo tracking of metal
nanoparticles
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Towards bio-metamaterials

Metamaterials: optical properties determined by their
organized structure rather than inherited directly from
the material properties of individual subunits.

Metallodielectric metamaterials are composed of
resonant metal inclusions in a dielectric matrix and
have subwavelength lattice periods.

Smith et al., Metamaterials and negative refractive index.
Science 305, 788-792 (2004).

Brown et al., Large Electromagnetic Stop Bands in
Metallodielectric Photonic Crystals. Applied Physics Letters
67, 2138-2140 (1995).

Fan et al., Large omnidirectional band gaps in
metallodielectric photonic crystals. Physical Review B 54,
11245-11251 (1996).



Symmetric protein shells: 3D structures with sub-
100 nm lattice parameter

Capsid protein shell

Inorganic core
(metal,
semiconductor,
magnetic)




Plasmon hybridization
(Nordlander, 2003)




3D metallodielectric plasmonic band
structure

De Abajo et coll., 2005
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Why VLPs? Colloidal crystal:
To preserve long range order oyusion = N*?0,,

Characteristic lengths:

. Ao = 0.6 um
£ i
é Kdecay ~20 um

Gposition = GAu
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In 3D
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Band splitting observed
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Conclusions

There is a vast unexplored territory in the area of
mechanisms of self-assembly.

New Tools (both theoretical and experimental) are
needed to access:

Dynamics,

Intermediates,

Relationship between structure and properties.

Optics provides convenient ways to manipulate,
probe and build.

Examples: near-field forces for trap integration, virus-
mimic probes, biological metamaterials.
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