# USPAS from a student's perspective: learning about accelerator physics.

#### Evgenya Smirnova

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

**APS2008, April 13, 2008** 





#### Outline

- Motivation: US education in accelerators and microwaves.
- From the start: applying to USPAS and choosing a class.
- Curriculum: My two USPAS experiences.
- Extra curriculum.
- Conclusion: thank you, USPAS!





## Motivation: US education in accelerators and microwaves.







## European vs. US education





Classwork is an essential part of the US graduate education.



### My MIT education

- I came to MIT to learn about the accelerator physics.
- MIT's program in accelerators and microwaves: 8 students enrolled currently, 1-3 students graduate yearly.
- MIT's curriculum does not have classes in accelerator physics or microwaves.
- My MIT transcript included: Statistical Physics, Quantum Physics, Intro to Plasma Physics I&II, Solid State Physics, Astrophysics, Plasma Waves, Magnetohydrodynamics, High Energy Plasmas, Plasma Transport.





## My Russian education

- I started my MIT PhD research relying on my Russian background in microwaves.
- My education from Russia included training in:
  - > Vacuum electronics (undergraduate);
  - > Quasioptical systems;
  - > Physics of electron beams;
  - > Waves in media;
  - > Propagation and diffraction of waves;
  - ➤ Laboratory in high power electronics.





## Education in other US universities

| University                        | # of classes in accelerators |
|-----------------------------------|------------------------------|
| Stanford University               | 2                            |
| UCLA                              | 2 (4 more in microwaves)     |
| University of Maryland            | 1 (in microwaves)            |
| Indiana University                | 1                            |
| University of Wisconsin – Madison | 4                            |



#### Two-week courses: June 16-27, 2008

(each of the following full courses earns 3 credits from the University of Maryland)

- Fundamentals of Accelerator Physics and Technology with Simulations and Measurements Lab (undergraduate level)
   Wise Wash & Standard Midweller Dudge
- Beam Dynamics Experiments on the
   University of Maryland Electron Ring
   Rami Kishek, Santiago Bernal, Ralph Fiorito,

  Detect O'Chesend the UNIVE Confe

## Applying to USPAS and choosing a class

 RF Superconductivity: Physics, <u>Technology and Applications</u>
 Jean Delayen, Jefferson Lab Beam Physics with Intense Space Charge
John Barnard and Steven Lund, Lawrence
Livermore National Lab





## Talking to my supervisor

• My supervisor was very supportive of my first attempt to go to USPAS.

• Second time he was very surprised "Why do you need to go for the second time, you have already been to USPAS last year?"

• He never had time to give me suggestions on the classes

to take.





## Choosing a class

- In my first visit I took "Linear accelerators" class, because I needed background to progress in my thesis work.
- In my second visit I took "Accelerator physics" class to learn about the accelerator physics in general.
- I wish USPAS had an academic advisor to help students choose the right class for them.











#### Linear Accelerators class

The class on Linear Accelerators helped me design the traveling-wave  $2\pi/3$  PBG accelerator structure.









#### Linear Accelerators class: cont.

I learned about structure's shunt impedance, quality factor, coupling, and measuring the field's profile with bead-pull. I applied this knowledge to my research right away.





## Accelerator Physics class

- Introduced in 1997 and has been presented at every school starting in 1998.
- One of the two most popular classes at USPAS (Accelerator Fundamentals is the other most popular class).
- Must teach about history and various types of accelerators, beams and rf, and applications of accelerators.





## Accelerator Physics class: cont.

In my class I learned about:

- FODO lattice, FODO lattice once again, FODO lattice for the third time...
- Well, beam dynamics is important. But should not the Accelerator Physics class have a rigid curriculum year to year?









## Extra curriculum







#### Extracurricular program: communication

USPAS should foster the sense of community among young accelerator physicists. Daily homework, breakfasts and dinners together serve the purpose!







#### What I did on the weekends ©

#### On the weekends I went skiing...



Should I have been learning about the accelerator physics instead?



## Extracurricular program: tour

- A visit to a major accelerator laboratory would be of a great interest to most students.
- According to Prof. Wiedemann such a tour would be hard to organize due to the big size of the school.
- Size of each USPAS is about 150 students. PAC tours involve more than 400 people. Tours should be possible for USPAS students.







## Learning about today's state-of-the-art

Many students would love to hear an easy introductory talk about new big accelerator projects, such as SNS, RHIC, LHC, and the current status of ILC.







## Suggestions

- Educate University professors about the importance of the School.
- Develop core curriculum (Accelerator Physics class).
- Introduce tours of the US accelerator facilities and talks about the-state-of-the art.





### Conclusion

- We are unlucky not to have an adequate accelerator physics curriculum in our Universities.
- The USPAS plays an essential role substituting for regular University classes in Accelerator physics for the US students.
- USPAS will succeed even more if we work with our accelerator community promoting the school.



